首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

3.
A detailed chronology of the cytological events related to maturation that take place within the reproduction molt cycle has been established. It has been shown that oocytes, initially arrested at prophase I, resume meiosis when approaching stage D1? of the molt cycle, ie, 4–5 days before molting. The following steps characterize this premolt period of oocyte maturation: nuclear envelope folding, nucleolar dissociation, condensation of the chromosomes, and beginning of the breakdown of the nuclear envelope (GVBD). At the ultrastructural level, it has been confirmed that GVBD actually takes place at the D1??D2 stage transition, when the germinal vesicle still occupies a central position in the oocyte. The migration of the chromosome takes only a few hours and begins approximately 4 hr before molting. It is only 1–2 hr before molting that the divalent chromosomes that are not yet organized in a metaphase plate become visible at the surface of the oocyte. They lay in a nucleoplasmic area no longer limited by the nuclear envelope. Metaphase I is reached a few minutes after molting. A second meiotic block appears at this stage, which persists until spawning, ie, for about 24 hr. Fertilization occurs at the moment of spawning. In vitro fertilization experiments demonstrated that fertilization normally triggers the release of the second meiotic block. Extrusion of the two polar bodies can be easily observed using a method for clearing and staining the oocytes in toto.  相似文献   

4.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

5.
We have established an assay to measure protein phosphatase activity in mouse oocytes using [32P]-radiolabeled phosphorylase a as the substrate. Removal of the radiolabel from the substrate in vitro was linear with time and could be inhibited totally by the addition of okadaic acid (inhibitor of type 1 and type 2 protein phosphatases), or partially by protein inhibitor 2 (inhibitor of type 1 protein phosphatases). We performed a detailed study of the activity of type 2A protein phosphatases in mouse oocytes undergoing meiotic maturation and after parthenogenetic activation of mature oocytes arrested in metaphase II. Significant changes in the activity of type 2A protein phosphatases were observed during the first meiotic and the first mitotic cell cycles. These alterations in type 2A protein phosphatase activity occurred in the absence of changes in the quantity of the catalytic sub-unit and can be correlated with changes in the activity of protein kinases and rearrangement of the cellular cytoskeleton. Our observations support a role for type 2A protein phosphatases in cell cycle regulation and demonstrate that, like the protein kinases, the type 2A phosphatases also undergo changes in their activity during early mammalian development.  相似文献   

6.
The Ascidiacea, the invertebrate chordates, includes three orders; the Stolidobranchia is the most complex. Until the present study, the onset of oocyte maturation (germinal vesicle breakdown) had been investigated in only a single pyurid (Halocynthia roretzi), in which germinal vesicle breakdown (GVBD) begins when the oocyte contacts seawater (SW); nothing was known about internal events. This study strongly suggests the importance of protein phosphorylation in this process. Herdmania pallida (Pyuridae) functions like H. roretzi; GVBD occurs in SW. Oocytes of Cnemidocarpa irene (Styelidae) do not spontaneously undergo GVBD in SW but must be activated. Herdmania oocytes are inhibited from GVBD by pH 4 SW and subsequently activated by mastoparan (G-protein activator), A23187 (Ca2+ ionophore) or dimethylbenzanthracene (tyrosine kinase activator). This requires maturation promoting factor (MPF) activity; cyclin-dependent kinase inhibitors roscovitine and olomoucine are inhibitory. It also entails dephosphorylation as demonstrated by the ability of the phosphatase inhibitor vitamin K3 to inhibit GVBD. GVBD is also inhibited by the tyrosine kinase inhibitors tyrphostin A23 and genistein, and LY-294002, a phosphatidylinositol-3-kinase inhibitor previously shown to inhibit starfish GVBD. LY-294002 inhibits strongly when activation is by mastoparan or ionophore but not when activated by dimethylbenzanthracene (DMBA). The DMBA is hypothesized to phosphorylate a phosphatase directly or indirectly causing secondary activation, bypassing inhibition.  相似文献   

7.
The effects of the pesticide carbendazim (MBC) on the in vitro meiotic maturation of mouse oocytes were evaluated using conventional and confocal fluorescence microscopy. The response of oocytes exposed to 0, 3, 10, or 30 μM MBC during meiotic maturation was analyzed with respect to chromosome organization, meiotic spindle microtubules, and cortical actin using fluorescent labels for each of these structures. Continuous exposure to MBC during the resumption of meiosis resulted in a dose-dependent inhibition of meiotic cell cycle progression at metaphase of meiosis-1. Drug exposure at the metaphase-anaphase transition of meiosis-1 did not interfere with cell cycle progression to metaphase-2 except at high concentrations (30 μM). At the level of spindle microtubule organization, MBC caused a loss of nonacetylated microtubules and a decrease in spindle size at 3 or 10 μM concentrations. Thirty μM MBC prevented spindle assembly when added at the beginning of meiotic maturation or caused spindle pole disruption and fragmentation when added to preformed spindles. Spindle disruption involved a loss of phosphoprotein epitopes, as monitored by MPM-2 staining, and resulted in the appearance of dispersed chromosomes that retained a metaphase-plate location on spindle fragments associated with the oocyte cortex. Polar body extrusion was impaired by MBC, and abnormal polar bodies were observed in most treated oocytes. The results suggest that MBC disrupts cell cycle progression in mouse oocytes by altering meiotic spindle microtubule stability and spindle pole integrity. Mol. Reprod. Dev. 46:351–362, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
9.
10.
Oocyte quality, which is directly related to reprogramming competence, is a major important limiting factor in animal cloning efficiency. Compared with oocytes matured in vivo, in vitro matured oocytes exhibit lower oocyte quality and reprogramming competence primarily because of their higher levels of reactive oxygen species. In this study, we investigate whether supplementing the oocyte maturation medium with melatonin, a free radical scavenger, could improve oocyte quality and reprogramming competence. We found that 10−9 M melatonin effectively alleviated oxidative stress, markedly decreased early apoptosis levels, recovered the integrity of mitochondria, ameliorated the spindle assembly and chromosome alignment in oocytes, and significantly promoted subsequent cloned embryo development in vitro. We also analyzed the effects of melatonin on epigenetic modifications in bovine oocytes. Melatonin increased the global H3K9 acetylation levels, reduced the H3K9 methylation levels, and minimally affected DNA methylation and hydroxymethylation. Genome-wide expression analysis of genes in melatonin-treated and nontreated oocytes was also conducted by high-throughput RNA sequencing. Our results indicated that melatonin ameliorates oocyte oxidative stress and improves subsequent in vitro development of bovine cloned embryos.  相似文献   

11.
12.
Hypoxanthine (HX) inhibition of in vitro meiotic resumption in goat oocytes   总被引:7,自引:0,他引:7  
To improve in vitro maturation and to understand the mechanism for meiotic resumption of oocytes, meiotic progression, and its control by hypoxanthine (HX) were studied in goat oocytes. Ovaries were obtained from a local abattoir, and cumulus-oocyte complexes (COCs) and follicular fluid were collected from follicles of different surface diameters (SDs). The meiotic competence and progression of oocytes were observed, and the concentration of HX in the follicular fluid and culture media was measured by high-performance liquid chromatography (HPLC). Full meiotic competence of goat oocytes was acquired in follicles of >/=1.5 mm in SD with 90% of the oocytes developing to metaphase II (MII) stage after 24 hr in culture. The HX concentration in follicular fluid decreased with follicle development, from the highest level of 1.16 mM in /=5 mm follicles. HX inhibited meiotic resumption of goat oocytes in a concentration-related manner but this inhibitory effect declined gradually. When we renewed the medium at 4 hr of HX-199 (TCM-199 supplemented with 4 mM HX) culture, the percentage of oocytes with intact germinal vesicle (GV) did not increase but decreased significantly instead. HPLC measurement of HX in the HX-199 culture drops indicated that the HX concentration declined from 0 hr to 4 hr of culture and after medium renewal at 4 hr of culture. By adding dibutyryl cAMP (db-cAMP) at medium renewal, we found that db-cAMP held up the decline of GV percentages. Together, these results were consistent with the possibility that the decline of HX inhibitory effect was not due to HX depletion but rather due to the negative feedback of the metabolites on its further uptake by oocytes. Goat oocytes were capable of normal nuclear maturation and activation after temporal arrest by HX, but prolonged exposure to HX induced spontaneous activation.  相似文献   

13.
In this study, we have shown that butyrolactone I (BL-I), a potent inhibitor of cyclin-dependent kinases, affects oocyte cytoplasmic morphology and nuclear function in terms of nucleolar ultrastructure and immunocytochemistry. Bovine oocytes were recovered from three classes of follicle size: 1.5-2, 2-3, and 3-6 mm. The oocytes were incubated for 40 hr with BL-I, and subsequently processed for transmission electron microscopy or immunocytochemistry. A control group of oocytes were processed immediately upon recovery (0 hr). In general, incubation with BL-I for 40 hr disrupted contact between cells of the cumulus oophorous and the oocyte, caused degeneration of the cortical granules and the peripheral migration of all cytoplasmic organelles. At the level of the nucleus, it induced convolution of the nuclear membrane and caused acceleration of nucleolar compaction in oocytes from follicles < 3 mm and fragmentation of nucleoli, particularly evidenced by immunocytochemistry, in oocytes from follicles > 3 mm. Furthermore, the effects appear to be more profound in fully-grown oocytes.  相似文献   

14.
We compared the profile of histone H1 kinase activity, reflecting Maturation Promoting Factor (MPF) activity in oocytes bisected at the germinal vesicle (GV) stage and allowed to mature as separate oocyte halves in vitro. Whereas the oocyte halves containing the nucleus exhibited the same profile of increased kinase activity as that typical for intact oocytes, the anuclear halves revealed strong inhibition of the increase in this activity soon after germinal vesicle breakdown (GVBD). In contrast, the profile of MAP kinase activity did not differ significantly between anuclear and nucleus-containing oocyte halves throughout maturation. Of the two MPF components, CDK1 and cyclin B1, the amount of the latter was significantly reduced in anuclear halves, a reduction due to low-level synthesis and not to enhanced degradation. Expression of three reporter luciferase RNAs constructed, respectively, to contain cyclin B1-specific 3'UTR, the globin-specific 3'UTR, or no 3'UTR sequence was enhanced in nuclear halves, with significantly greater enhancement for the construct containing cyclin B1-specific 3'UTR as compared to the two other RNAs. We conclude that the profile of activity of MPF during mouse oocyte maturation is controlled by an unknown GV-associated factor(s) acting via 3'UTR-dependent control of cyclin B1 synthesis. These results require the revision of the hitherto prevailing view that the control of MPF activity during mouse oocyte maturation is independent of GV-derived material.  相似文献   

15.
Glutathione (GSH) is thought to play critical roles in oocyte function including spindle maintenance and provision of reducing power needed to initiate sperm chromatin decondensation. Previous observations that GSH concentrations are higher in mature than immature oocytes and decline after fertilization, suggest that GSH synthesis may be associated with cell cycle events. To explore this possibility, we measured the concentrations of GSH in Golden Hamster oocytes and zygotes at specific stages of oocyte maturation and at intervals during the first complete embryonic cell cycle. Between 2 and 4 hr after the hormonal induction of oocyte maturation, GSH concentrations increased significantly (approximately doubling) in both oocytes and their associated cumulus cells. This increase was concurrent with germinal vesicle breakdown and the condensation of metaphase I chromosomes in the oocyte. GSH remained high in ovulated, metaphase II (MII) oocytes, but then declined significantly, by about 50%, shortly after fertilization, as the zygote progressed back into interphase (the pronucleus stage). GSH concentrations then plummeted by the two-cell embryo stage and remained at only 10% of those in MII oocytes throughout pre-implantation development. These results demonstrate that oocyte GSH concentrations fluctuate with the cell cycle, being highest during meiotic metaphase, the critical period for spindle growth and development and for sperm chromatin remodeling. These observations raise the possibility that GSH synthesis in maturing oocytes is regulated by gonadotropins, and suggest that GSH is more important during fertilization than during pre-implantation embryo development.  相似文献   

16.
This study was conducted to assess the role of AMPK in regulating meiosis in mouse oocytes from the germinal vesicle stage to metaphase II. Exposure of mouse cumulus cell‐enclosed oocytes (CEO) and denuded oocytes (DO) during spontaneous maturation in vitro to AMPK‐activating agents resulted in augmentation of the rate and frequency of polar body formation. Inhibitors of AMPK had an opposite, inhibitory effect. In addition, the AMPK inhibitor, compound C (Cmpd C) increased the frequency of oocyte activation. The stimulatory action of the AMPK‐activating agent, AICAR, and the inhibitory action of Cmpd C were diminished if exposure was delayed, indicating an early action of AMPK on polar body formation. The frequency of spontaneous and Cmpd C‐induced activation in CEO was reduced as the period of hormonal priming was increased, and AMPK stimulation eliminated the activation response. Immunostaining of oocytes with antibody to active AMPK revealed an association of active kinase with chromatin, spindle poles, and midbody during maturation. Immunolocalization of the α1 catalytic subunit of AMPK showed an association with condensed chromatin and the meiotic spindle but not in the spindle poles or midbody; α2 stained only diffusely throughout the oocyte. These data suggest that AMPK is involved in a regulatory capacity throughout maturation and helps promote the completion of meiosis while suppressing premature activation. Mol. Reprod. Dev. 77:888–899, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Demecolcine (Colcemid; DE), a colchicine derivative, augmented meiosis reinitiation by progesterone in the follicle-enclosed oocyte of the frog, Rana pipiens. Whereas DE treatment alone had a minor stimulatory effect on germinal vesicle dissolution (GVD), this treatment elicited significant germinal vesicle movement (GVM) as evidenced by translocation of the GV to the oocyte surface. The effects of DE on GVM and progesterone-induced GVD were also elicited in oocytes lacking follicle cells or other follicle wall components (type IV follicles), indicating that DE has a direct action on the oocyte itself. DE alone did not alter oocyte membrane voltage (Vm), resistance (Rm), or current (Im) and did not interfere with the changes in these parameters usually elicited by progesterone. After 5 hr incubation of follicle-enclosed oocytes with either DE or progesterone, or combinations of both, the GV could be moved to the animal pole surface with less centrifugal force compared to control follicles. This result suggests that a decrease in ooplasmic viscoelasticity is induced by progesterone, which is mimicked by DE before GVM or GVD normally begins. The results presented here support the idea that DE-sensitive oocyte components such as microtubules are involved in the process of steroid-induced meiosis. These findings provide a physiological basis for future studies of cytoskeletal involvement in the events of meiosis.  相似文献   

18.
Cdc25C is a dual specificity phosphatase essential for dephosphorylation and activation of cyclin-dependent kinase 1 (cdk1), a prerequisite step for mitosis in all eucaryotes. Cdc25C activation requires phosphorylation on at least six sites including serine 214 (S214) which is essential for metaphase/anaphase transit. Here, we have investigated S214 phosphorylation during human meiosis with the objectives of determining if this mitotic phosphatase cdc25C participates in final meiotic divisions in human oocytes. One hundred forty-eight human oocytes from controlled ovarian stimulation protocols were stained for immunofluorescence: 33 germinal vesicle (GV), 37 metaphase stage I (MI), and 78 unfertilized metaphase stage II (MII). Results were stage dependent, identical, independent of infertility type, or stimulation protocol. During GV stages, phospho-cdc25C is localized at the oocyte periphery. During early meiosis I (MI), phosphorylated cdc25C is no longer detected until onset of meiosis I. Here, phospho-cdc25C localizes on interstitial microtubules and at the cell periphery corresponding to the point of polar body expulsion. As the first polar body reaches the periphery, phosphorylated cdc25C is localized at the junction corresponding to the mid body position. On polar body expulsion, the interior signal for phospho-cdc25C is lost, but remains clearly visible in the extruded polar body. In atresic or damaged oocytes, the polar body no longer stains for phospho-cdc25C. Human cdc25C is both present and phosphorylated during meiosis I and localizes in a fashion similar to that seen during human mitotic divisions implying that the involvement of cdc25C is conserved and functional in meiotic cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号