首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of H-1 viral replicative-form double-stranded DNA and progeny single-stranded DNA replication in parasynchronously infected, simian virus 40-transformed newborn human kidney cells was studied with high-resolution electron microscope autoradiography (80-nm silver grains). We analyzed wild-type H-1 and ts1 H-1 (a conditional mutant defective in progeny single-stranded DNA synthesis). The proportion of the total DNA synthesis that was viral was estimated to be >90% by comparing the amount of [(3)H]thymidine uptake in cultures infected with wild-type H-1 versus ts14 (an H-1 mutant defective in DNA replication). Simultaneous staining with cytochrome c-conjugated anti-H-1 immunoglobulin G was performed to ensure that cells incorporating [(3)H]thymidine (2- to 60-min pulses) were H-1 infected. The sites of H-1 replicative-form (in ts1-infected cells) and progeny (in wild-type-infected cells) DNA synthesis were identical. Immunospecifically labeled nuclei at the earliest stages of infection exhibited dense clusters of silver grains over material extruded from nucleolar fibrillar centers. These foci became larger with increasing cellular damage, forming a limited number of H-1 DNA synthetic centers in the euchromatin. Each island-like focus was surrounded by tufts of heterochromatin containing high concentrations of unassembled H-1 capsid proteins. In late phases of infection, the heterochromatin became completely marginated, and the nucleoplasm contained only euchromatin that exhibited randomly distributed sites of H-1 DNA replication. This indicates that H-1 DNA synthesis begins at localized euchromatic or nucleolar sites and then spreads outward. Immunostained heterochromatin and nucleolar chromatin never incorporated [(3)H]thymidine. Our results suggest that H-1 proteins and cellular cofactors associated with the fibrillar component of the nucleolus and the euchromatin may play a role in the regulation of H-1 DNA synthesis.  相似文献   

2.
S L Rhode  rd 《Journal of virology》1978,25(1):215-223
A temperature-sensitive mutant of H-1, ts14, that is partially defective in replicative-form (RF) DNA synthesis has been isolated. ts14 H-1 is characterized by a decrease in plaque-forming ability and production of infectious virus at the restrictive temperature of 39.5 degrees C. RF DNA synthesis of ts14 is reduced to 3 to 7% of that of wild-type H-1 at either the restrictive or the permissive temperature. A complementation analysis of RF synthesis of ts14 and a viable defective H-1 virus, DI-1, or wild-type H-3 indicates that the defective RF DNA synthesis of ts14 is cis-acting. ts14, unlike wild-type H-1, causes a multiplicity-dependent inhibition of DI-1 or H-3, but not LuIII, RF DNA synthesis. Mixed infections of cells with two parvoviruses also exhibited a cross-interference for viral protein synthesis that was multiplicity dependent, ts14 inhibited infectious virus production of H-1 or H-3, but not LuIII. LuIII-or H-3-pseudotype particles were produced by coinfection with H-1. H-3 and H-1 showed similar interactions with ts14, and H-3 DNA was more homologous to H-1 than was LuIII by comparative physical mapping studies. The results suggest that ts14 is a mutant with a defect in a regulatory sequence of its DNA that influence RF DNA replication.  相似文献   

3.
The Parvovirus H-1 replicates autonomously in hamster embryo cells. A DNA synthetic event, called HA-DNA synthesis, upon which subsequent viral RNA and viral hemagglutinin synthesis is dependent, is initiated in late S phase of the infected cell (18). It was postulated that HA-DNA represents parental viral replicative form DNA (RF DNA). This study describes the isolation and characterization of H-1 RF DNA as part of the continuing study of the mechanisms and control of DNA replication in the eukaryotic cell. The H-1 RF DNA is a linear duplex molecule containing the viral strand and its complement. The complementary strands of the RF DNA have been separated by equilibrium density gradient centrifugation. The RF DNA has a buoyant density of 1.705 in neutral CsCl and an estimated guanine plus cytosine (GC) content of 45.9%. It has a sedimentation coefficient of 17S. The calculated molecular weight of 3.7 x 10(6) is twice that of the single-stranded virion DNA. H-1 virions contain DNA that is homogeneous and free of complementary strands.  相似文献   

4.
S L Rhode  III 《Journal of virology》1977,21(2):694-712
The linear duplex replicative form (RF) DNA of the parvovirus H-1 has been characterized with respect to cleavage by the bacterial restriction endonuclease of Escherichia coli, EcoRI. RF DNA has a single cleavage site 0.22 genome length from the left end of the molecule. The molecular weight of H-1 RF DNA determined by gel electrophoresis is 3.26 X 10(6). H-1 RF DNA has been found to dimerize by hydrogen-bounded linkage at the molecular left end, and in some molecules the viral strand is covalently linked to the complementary strand. Some 10% of monomeric RF DNA also has a covalent linkage between the viral and complementary strands at the left end. The EcoRI-B fragment, containing the left end of the RF molecule, appears to be a replication terminus by its labeling characteristics for both RF and progeny DNA synthesis. These findings suggest that the left end of H-1 RF DNA has some type of "turn-around" structure and that this end is not an origin for DNA synthesis.  相似文献   

5.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

6.
An in vitro system using nuclei from parvovirus H-1-infected cells was used to characterize the influence of inhibitors of mammalian DNA polymerases on viral DNA synthesis. The experiments tested the effects of aphidicolin, which is highly specific for DNA polymerase alpha, and 2',3'-dideoxythymidine-5'-triphosphate (ddTTP), which inhibits cellular DNA polymerases in the order gamma greater than beta greater than alpha. Both aphidicolin and ddTTP were inhibitory, indicating that both polymerase alpha and a ddttp-sensitive enzyme are required for viral DNA synthesis. This was seen more clearly in kinetic measurements, which indicated an initial period of rapid DNA synthesis with the participation of polymerase alpha, followed by a period of less rapid, but more sustained, rate of DNA synthesis carried out by a ddTTP-sensitive enzyme, probably polymerase gamma. One interpretation of the results is that polymerase alpha functions in a strand displacement stage of the viral DNA replication mechanism, whereas polymerase gamma serves to convert the displaced single strands back to double-strand replicative form.  相似文献   

7.
8.
The ability of bacteriophage SH-133 to replicate in heterotrophically (H-) and autotrophically (A-) grown Hydrogenomonas facilis was examined. Both the synthesis of infectious phage particles and the efficiency of plating (EOP) were reduced by 90% in A-grown cells. Adsorption of phage and lethal effects on H. facilis were identical in both systems. One-step growth experiments showed that cell lysis preceded the appearance of infectious particles in A-grown cells. Burst size studies with mixotrophically grown cells did not indicate the presence of an inhibitor of phage synthesis indigenous to autotrophic metabolism. DNA synthesis was identical in H- and A-grown infected cells; however, protein synthesis was significantly reduced in A-grown infected cells when compared with protein synthesis in H-grown infected cells. The data suggest that the reduction in EOP and phage synthesis in A-grown cells is caused by a defect in viral protein synthesis which results in the limited production of an essential viral protein at the time of cell lysis.  相似文献   

9.
We have identified a nuclear structure that is induced after infection with the autonomous parvovirus H-1. Using fluorescence microscopy, we observed that the major nonstructural protein (NS1) of H-1 virus which is essential for viral DNA amplification colocalized with virus-specific DNA sequences and sites of ongoing viral DNA replication in distinct nuclear bodies which we designated H-1 parvovirus-associated replication bodies (H-1 PAR-bodies). In addition, two cellular proteins were shown to accumulate in H1 PAR-bodies: (i) the proliferating cell nuclear antigen (PCNA) which is essential for chromosomal and parvoviral replication and (ii) the NS1-interacting small glutamine-rich TPR-containing protein (SGT), suggesting a role for the latter in parvoviral replication and/or gene expression. Since many DNA viruses target preexisting nuclear structures, known as PML-bodies, for viral replication and gene expression, we have determined the localization of H-1 PAR- and PML-bodies by double-fluorescence labeling and confocal microscopy and found them to be spatially unrelated. Furthermore, H-1 PAR-bodies did not colocalize with other prominent nuclear structures such as nucleoli, coiled bodies, and speckled domains. Electron microscopy analysis revealed that NS1, as detected by indirect immunogold labeling, was localized in ring-shaped electron-dense nuclear structures corresponding in size and frequency to H-1 PAR-bodies. These structures were also clearly visible without immunogold labeling and could be detected only in infected cells. Our results suggest that H-1 virus does not target known nuclear bodies for DNA replication but rather induces the formation of a novel structure in the nucleus of infected cells.  相似文献   

10.
S L Rhode  rd 《Journal of virology》1977,22(2):446-458
The cleavage map of H-1 replicative-form DNA to the bacterial restriction endonuclease EcoRI, HaeII, HaeIII, HindII, HindIII, and HpaII has been determined. The 5'-phosphoryl end of the viral strand is on the right end of the molecule at or near the replication origin. Evidence is presented for the presence of inverted self-complementary sequences at the right end that differ from those at the left end. These sequences allow a foldback of the DNA after denaturation, and a minority of the native replicative-form DNA has the foldback configuration. The possible role of these structures in H-1 DNA synthesis is discussed.  相似文献   

11.
目的建立用大鼠胶质瘤细胞系(Rat glial cell line C6)替代大鼠原代胚细胞(primary rat embryocells,RE)培养大鼠细小病毒(Toolan virus,H-1)的方法。方法 将0.8 mL H-1病毒接种C6细胞(75T培养瓶,细胞接种量为2×105/mL,培养过夜),待细胞病变CPE达++~+++时,用免疫荧光(FITC)鉴定所培养病毒的抗原,用血球凝集试验(HA)测定培养物上清效价,用DNA测序鉴定所培养的病毒,用96孔板培养法测定H-1病毒的TCID50。结果H-1在接种到C6细胞的第3~4天,细胞发生明显的病变,CPE可达++++,FITC鉴定呈H-1抗原阳性,病毒的培养上清中HA效价为1∶320。测序结果表明:该病毒序列与NCBI中H-1序列同源性达99%,确定为H-1病毒。收获的H-1的TCID50为103.2/0.1 mL。结论用大鼠胶质瘤细胞系(C6)可以替代大鼠原代胚细胞(RE)进行大鼠细小病毒的培养。  相似文献   

12.
An in-frame, 114-nucleotide-long deletion that affects the NS-coding sequence was created in the infectious molecular clone of the standard parvovirus H-1PV, thereby generating Del H-1PV. The plasmid was transfected and further propagated in permissive human cell lines in order to analyze the effects of the deletion on virus fitness. Our results show key benefits of this deletion, as Del H-1PV proved to exhibit (i) higher infectivity (lower particle-to-infectivity ratio) in vitro and (ii) enhanced tumor growth suppression in vivo compared to wild-type H-1PV. This increased infectivity correlated with an accelerated egress of Del H-1PV progeny virions in producer cells and with an overall stimulation of the viral life cycle in subsequently infected cells. Indeed, virus adsorption and internalization were significantly improved with Del H-1PV, which may account for the earlier appearance of viral DNA replicative forms that was observed with Del H-1PV than wild-type H-1PV. We hypothesize that the internal deletion within the NS2 and/or NS1 protein expressed by Del H-1PV results in the stimulation of some step(s) of the viral life cycle, in particular, a maturation step(s), leading to more efficient nuclear export of infectious viral particles and increased fitness of the virus produced.  相似文献   

13.
The geometry of replicative form (RF) DNA synthesis of the H-1 parvovirus was studied with the electron microscope using formamide or aqueous variations of the Kleinschmidt spreading procedure. H-1 DNA was isolated from human or hamster cells infected with a temperature-sensitive mutant, ts1, which is deficient in progeny single-stranded DNA synthesis at the restrictive temperature (S.L. Rhode, 1976), thus minimizing possible confusion between RF and progeny DNA replicative intermediates (RIs). The purity of the isolated H-1 DNA, as determined by gel electrophoresis, ethidium bromide staining, autoadiography, and digestion with endo R-EcoRI, was high. H-1 RF DNA'S WERE LINEAR DOUBLE-STRANDED MOLECULES, 1.53 MUM IN LENGTH. H-1 RIs of RF DNA replication were double-stranded, Y-shaped molecules, with the same length as RF DNAs. The replication origin was localized no more than 0.15 genome lengths from one end of the RF DNA, with replication proceeding toward the other end at a uniform rate. Similar RF and RI molecules of dimer size were also observed. The length of H-1 single-stranded DNA extracted from purified virions was measured relative to that of phiX174 and it had a very similar contour length, so that the molecular weight of H-1 single-stranded DNA would be at least 1.48 X 10(6) to 1.59 X 10(6) (Berkowitz and Day, 1974).  相似文献   

14.
Proportions of the four major chicken H-1 histones (referred to as H-1's a-d) change during in vitro skeletal myogenesis. As myoblasts fuse and differentiate into myotubes, the relative amount of H-1c increases dramatically. The change occurs primarily because synthesis of the H-1 species is coupled to DNA synthesis to different extents. H-1c synthesis is least tightly coupled to DNA replication in precursor myoblasts and in differentiated myotubes. Thus H-1c synthesis predominates after dividing myoblasts fuse into postmitotic myotubes. This results in the replacement of pre-existing H-1 and therefore increases the relative amount of H-1c. Differences in the stability of the H-1's are also involved in changing H-1 proportions. The results show that changes in H-1 proportions during myogenesis are a consequence of withdrawal from the cell cycle. The data provides a general mechanistic explanation of how tissue-specific H-1 proportions are established.  相似文献   

15.
The relationship between viral DNA and protein synthesis during herpes simplex virus type 1 (HSV-1) replication in HeLa cells was examined. Treatment of infected cells with cytosine arabinoside (ara-C), which inhibited the synthesis of HSV-1 DNA beyond the level of detection, markedly affected the types and amounts of viral proteins made in the infected cell. Although early HSV-1 proteins were synthesized normally, there was a rapid decline in total viral protein synthesis beginning 3 to 4 h after infection. This is the time that viral DNA synthesis would normally have been initiated. ara-C also prevented the normal shift from early to late viral protein synthesis. Finally, it was shown that the effect of ara-C on late protein synthesis was dependent upon the time after infection that the drug was added. These results suggest that inhibition of progeny viral DNA synthesis by ara-C prevents the "turning on" of late HSV-1 protein synthesis but allows early translation to be "switched off."  相似文献   

16.
Viral and complementary strand circular DNA molecules were isolated from intracellular bacteriophage f1 replicative-form DNA. Soluble protein extracts of Escherichia coli were used to examine the initiation of DNA synthesis on these DNA templates. The initiation of DNA synthesis on f1 viral strand DNA was catalyzed by E. coli DNA-dependent RNA polymerase, as was initiation of f1 viral strand DNA isolated from mature phage particles. The site of initiation was the same as that used in vivo. In contrast, no de novo initiation of DNA synthesis was detected on f1 complementary strand DNA. Control experiments demonstrated that the E. coli dnaB, dnaC, and dnaG initiation proteins were active under the conditions employed. The results suggest that the viral strand of the f1 replicative-form DNA molecule carries the same DNA synthesis initiation site as the viral strand packaged in mature phage, whereas the complementary strand of the replicative-form DNA molecule carries no site for de novo primer synthesis. These in vitro observations are consistent with the simple rolling circle model for f1 DNA replication in vivo proposed by Horiuchi and Zinder.  相似文献   

17.
Morphologically altered and established human fibroblasts, obtained either by 60Co gamma irradiation, treatment with the carcinogen 4-nitroquinoline 1-oxide, or simian virus 40 (SV40) infection, were compared with their normal finite-life parental strains for susceptibility to the autonomous parvoviruses H-1 virus and the prototype strain of minute virus of mice (MVMp). All transformed cells suffered greater virus-induced killing than their untransformed progenitors. The cytotoxic effect of H-1 virus was more severe than that of MVMp. Moreover, the level of viral DNA replication was much (10- to 85-fold) enhanced in the transformants compared with their untransformed parent cells. Thus, in this system, cell transformation appears to correlate with an increase in both DNA amplification and cytotoxicity of the parvoviruses. However, the accumulation of parvovirus DNA in the transformants was not always accompanied by the production of infectious virus. Like in vitro-transformed fibroblasts, a fibrosarcoma-derived cell line was sensitive to the killing effect of both H-1 virus and MVMp and amplified viral DNA to high extents. The results indicate that oncogenic transformation can be included among cellular states which modulate permissiveness to parvoviruses under defined growth conditions.  相似文献   

18.
Parvovirus H-1 has been shown to suppress spontaneous and chemically or virally induced tumorigenesis in hamsters. In human cell culture systems propagation of H-1 is restricted to transformed cells, which are killed by H-1 infection, in contrast to normal diploid cells, which are nonpermissive for H-1. By analyzing the permissiveness of a variety of human cells for H-1, it was determined that the majority of tested transformed or immortalized cells which were permissive for H-1 contained the DNA of oncogenic viruses (human papillomavirus, simian virus 40, adenovirus, hepatitis B virus, Epstein-Barr virus, and human T-cell lymphotropic virus type I). Of six transformed cell lines negative for persisting tumor virus DNA, only two were permissive for H-1, while two were semipermissive and two were nonpermissive. Thus, persistence and expression of tumor virus functions appears to promote full permissiveness for H-1 in human cells. However, neither expression of genes of specific viral genomes nor the transformed state of apparently virus-free cells alone was sufficient to render human cells permissive for H-1. Therefore, the effect of tumor virus functions on H-1 in transformed cells seems to be indirect, probably mediated by cellular factors which are induced or switched off during the transformation process. It appears that similar factors are induced or switched off by 5-azacytidine or calcium phosphate, both known inducers of cellular gene expression.  相似文献   

19.
Autoradiographic analyses of deoxyribonucleic acid (DNA) synthesis in randomly growing KB cell cultures infected with equine abortion virus (EAV) suggested that viral DNA synthesis was initiated only at times that coincided with the entry of noninfected control cells into the S phase of the cell cycle. Synchronized cultures of KB cells were infected at different stages of the cell cycle, and rates of synthesis of cellular and viral DNA were measured. When cells were infected at different times within the S phase, viral DNA synthesis was initiated 2 to 3 hr after infection. However, when cells in G1 and G2 were infected, the initiation of viral DNA synthesis was delayed and occurred only at times corresponding to the S phase. The times when viral DNA synthesis began were independent of the time of infection and differed by as much as 5 hr, depending on the stage of the cell cycle at which cells were infected. Viral one-step growth curves were also related to the S phase in a manner which indicated a relationship between the initiation of viral DNA synthesis and the S phase. These data support the concept that initiation of EAV DNA synthesis is dependent upon some cellular function(s) which is related to the S phase of the cell cycle.  相似文献   

20.
Recent studies demonstrated the ability of the recombinant autonomous parvoviruses MVMp (fibrotropic variant of the minute virus of mice) and H-1 to transduce therapeutic genes in tumor cells. However, recombinant vector stocks are contaminated by replication-competent viruses (RCVs) generated during the production procedure. To reduce the levels of RCVs, chimeric recombinant vector genomes were designed by replacing the right-hand region of H-1 virus DNA with that of the closely related MVMp virus DNA and conversely. Recombinant H-1 and MVMp virus pseudotypes were also produced with this aim. In both cases, the levels of RCVs contaminating the virus stocks were considerably reduced (virus was not detected in pseudotyped virus stocks, even after two amplification steps), while the yields of vector viruses produced were not affected. H-1 virus could be distinguished from MVMp virus by its restriction in mouse cells at an early stage of infection prior to detectable viral DNA replication and gene expression. The analysis of the composite viruses showed that this restriction could be assigned to a specific genomic determinant(s). Unlike MVMp virus, H-1 virus capsids were found to be a major determinant of the greater permissiveness of various human cell lines for this virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号