首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On-line monitoring and control of cell culture fermentation is important for optimal and consistent production of biologicals. In this work, glucose and lactate concentrations are monitored on-line using a commercially available analyzer (Model 2700, Yellow Springs Instruments, Yellow Springs, OH) during batch and perfusion hybridoma cell fermentation. Cell free samples from the reactor are obtained using a 0.45 mum hollow fiber filtering system placed in a circulation loop. The samples were analyzed at specified times and the data are collected on a computer. A process control strategy was developed to control the concentrations of glucose and lactate in a perfusion reactor where the feed rate is adjusted to maintain their concentrations at desired set points. Hybridoma cells (A10G10) were cultivated in a high density perfusion culture where cell density increased from 2 to 14 million cells/mL. During this period the control algorithm successfully adjusted the perfusion rate while maintaining constant glucose and lactate concentrations. Glucose consumption and lactate accumulation rates as well as net lactate yield on glucose were monitored continuously during perfusion culture. These metabolic rates were observed to be independent of cell concentration and were used for the estimation of viable cell density in the reactor. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 372-378, 1997.  相似文献   

2.
Two different automated immunoanalysis systems are presented. Both are based on the principles of flow-injection analysis and were developed to provide reliable, rapid monitoring of relevant proteins in animal cell cultivation processes. One system uses a turbidimetric analysis, and the other employs a heterogeneous chemistry with immobilized immunocomponents. For both systems, the analysis time is in the range of a few minutes, and a complete analysis cycle, including triplicate analyses and various washing steps, is in the range of 20–30 minutes. Samples from cultivation processes can be analyzed directly without dilution. Quantitation of proteins such as rt-PA or monoclonal antibodies can be performed over an analyte concentration range of 1–1000 mg/L. Both systems were compared to conventional ELISA assays on microtiter plates. The turbidimetric analysis system also included a biosensor for simultaneous glucose determination.  相似文献   

3.
Acid-base status is considered the major factor controlling renal NH4+ production from glutamine, with maximal values found in chronic acidosis. However, metabolic inhibitors have been shown to increase NH4+ production without acid-base change; the mechanism for this increase is unclear. Fluorocitrate was administered to dogs with chronic metabolic alkalosis. Following fluorocitrate total renal NH4+ production rose from 32 +/- 5 to 104 +/- 15 mumol/(min.100 mL glomerular filtration rate (GFR] (p less than 0.01) and glutamine extraction rose from 26 +/- 8 to 65 +/- 8 mumol/(min.100 mL GFR) (p less than 0.01). These values approximate maximal values found in chronic acidosis. Lactate utilization fell from 165 +/- 19 to 99 +/- 7 mumol/(min.100 mL GFR) following fluorocitrate (p less than 0.01). Citrate extraction fell to zero and alanine production rose from 27 +/- 4 to 46 +/- 7 mumol/(min.100 mL GFR) (p less than 0.01). Oxygen consumption remained unchanged following fluorocitrate, 584 +/- 29 vs. 549 +/- 29 mumol/(min.100 mL GFR). These results demonstrate that in the presence of metabolic inhibition in the kidney, ATP production remains constant. This is achieved by increased utilization of one substrate, glutamine, when the ATP production from other substrates is reduced. Thus the necessity to maintain constant ATP production appears to modulate renal NH4+ production.  相似文献   

4.
Pregnant ewes with catheters implanted in an artery and the uterine and recurrent tarsal veins were infused at a constant rate with U−14C-labelled glucose, alanine or bicarbonate. Measurements were made of the overall and local fractional contribution of glucose and alanine to CO2 production and of the extent of interconversion of these metabolites. In the whole animal, by coupling the results with the authors’ previous study of lactate metabolism, a solution was obtained to an open unrestricted 4-compartment model of the exchange of carbon between glucose, lactate, alanine and CO2. A more limited study was made with non-pregnant sheep because complete data for lactate interactions with alanine were not available. Our analysis of glucose/lactate/alanine/CO2 interactions in pregnant sheep suggests that about two-thirds of the glycogenic carbon was oxidised fairly directly to CO2. There was relatively little recycling of glucose carbon through lactate and alanine so that most of the remaining glycogenic carbon was stored as product with relatively long turnover time. It is possible that much of this was in the form of muscle glycogen, and analysis of glycogenic carbon exchange across the hind limb muscle was consistent with this conclusion. In non-pregnant ewes, the findings, although incomplete, suggested that there were no great differences from the findings in pregnant ewes.  相似文献   

5.
The development of processes to produce biopharmaceuticals industrially is still largely empirical and relies on optimizing both medium formulation and cell line in a product-specific manner. Current small-scale (well plate-based) process development methods cannot provide sufficient sample volume for analysis, to obtain information on nutrient utilization which can be problematic when processes are scaled to industrial fermenters. We envision a platform where essential metabolites can be monitored non-invasively and in real time in an ultra-low volume assay in order to provide additional information on cellular metabolism in high throughput screens. Towards this end, we have developed a model system of Chinese Hamster Ovary cells stably expressing protein-based biosensors for glucose and glutamine. Herein, we demonstrate that these can accurately reflect changing intracellular metabolite concentrations in vivo during batch and fed-batch culture of CHO cells. The ability to monitor intracellular depletion of essential nutrients in high throughput will allow rapid development of improved bioprocesses.  相似文献   

6.
A rat four vessel occlusion model was utilized to examine the effects of ischemia/reperfusion on cortical window superfusate levels of amino acids, glucose, and lactate. Superfusate aspartate, glutamate, phosphoethanolamine, taurine, and GABA were significantly elevated by cerebral ischemia, then declined during reperfusion. Other amino acids were affected to a lesser degree. Superfusate lactate rose slightly during the initial ischemic period, declined during continued cerebral ischemia and then was greatly elevated during reperfusion. Superfusate glucose levels declined to near zero levels during ischemia and then rebounded beyond basal levels during the reperfusion period. Inhibition of neuronal lactate uptake with alpha-cyano-4-hydroxycinnamate dramatically elevated superfusate lactate levels, enhanced the ischemia/reperfusion evoked release of aspartate but reduced glutamine levels. Topical application of an alternative metabolic fuel, glutamine, had a dose dependent effect. Glutamine (1 mM) elevated basal superfusate glucose levels, diminished the decline in glucose during ischemia, and accelerated its recovery during reperfusion. Lactate levels were elevated during ischemia and reperfusion. These effects were not evident at 5 mM glutamine. At both concentrations, glutamine significantly elevated the superfusate levels of glutamate. Topical application of sodium pyruvate (20 mM) significantly attenuated the decline in superfusate glucose during ischemia and enhanced the levels of both glucose and lactate during reperfusion. However, it had little effect on the ischemia-evoked accumulation of amino acids. Topical application of glucose (450 mg/dL) significantly elevated basal superfusate levels of lactate, which continued to be elevated during both ischemia and reperfusion. The ischemia-evoked accumulations of aspartate, glutamate, taurine and GABA were all significantly depressed by glucose, while phosphoethanolamine levels were elevated. These results support the role of lactate in neuronal metabolism during ischemia/reperfusion. Both glucose and glutamine were also used as energy substrates. In contrast, sodium pyruvate does not appear to be as effectively utilized by the ischemic/reperfused rat brain since it did not reduce ischemia-evoked amino acid efflux.  相似文献   

7.
In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium concentrations above 2.5 mM, the cells displayed specific morphological changes. The effect of lactate was different to that of ammonium since the cell growth rate was progressively decreasing with the increase of lactate concentration, whereas the glucose consumption rate remained almost unchanged. Besides that, it was found that lactate was steadily eliminated from the culture medium when its initial concentration was relatively high. The influence of glutamine on CCO cell propagation showed that nutrient requirements of this cell line were mainly dependent on glutamine rather than glucose. The increase in glutamine concentration led to the increase in cell growth rate and consequent ammonia accumulation while the glucose utilization and lactate production were reduced. Without glutamine in culture medium cell growth was arrested. However, the lack of glucose reversed the stimulating effect of glutamine by decreasing cell growth rate and affecting amino acid utilization.  相似文献   

8.
Glucose and glutamine metabolism in several cultured mammalian cell lines (BHK, CHO, and hybridoma cell lines) were investigated by correlating specific utilization and formation rates with specific maximum activities of regulatory enzymes involved in glycolysis and glutaminolysis. Results were compared with data from two insect cell lines and primary liver cells. Flux distribution was measured in a representative mammalian (BHK) and an insect (Spodoptera frugiperda) cell line using radioactive substrates. A high degree of similarity in many aspects of glucose and glutamine metabolism was observed among the cultured mammalian cell lines examined. Specific glucose utilization rates were always close to specific hexokinase activities, indicating that formation of glucose-6-phosphate from glucose (catalyzed by hexokinase) is the rate limiting step of glycolysis. No activity of the key enzymes connecting glycolysis with the tricarboxylic acid cycle, such as pyruvate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase, could be detected. Flux distribution in BHK cells showed glycolytic rates very similar to lactate formation rates. No glucose- or pyruvate-derived carbon entered the tricarboxylic acid cycle, indicating that glucose is mainly metabolized via glycolysis and lactate formation. About 8% of utilized glucose was metabolized via the pentose phosphate shunt, while 20 to 30% of utilized glucose followed pathways other than glycolysis, the tricarboxylic acid cycle, or the pentose phosphate shunt. About 18% of utilized glutamine was oxidized, consistent with the notion that glutamine is the major energy source for mammalian cell lines. Mammalian cells cultured in serum-free low-protein medium showed higher utilization rates, flux rates, and enzyme activities than the same cells cultured in serum-supplemented medium. Insect cells oxidized glucose and pyruvate in addition to glutamine. Furthermore, insect cells produced little or no lactate and were able to channel glycolytic intermediates into the tricarboxylic acid cycle. Metabolic profiles of the type presented here for a variety of cell lines may eventually enable one to interfere with the metabolic patterns of cells relevant to biotechnology, with the hope of improving growth rate and/or productivity. © 1996 Wiley-Liss, Inc.  相似文献   

9.
We have developed a simple and accurate isocratic HPLC method, without any prederivatisation, for the determination of glucose, lactate, glutamine, glutamate, pyrrolidone carboxylic acid and alanine in samples from mammalian cell cultures. The method has been successfully validated with enzyme analysis for each of the compounds. Quantification of pyrrolidone carboxylic acid makes the correction for glutamine decrease due to chemical decomposition very simple and accurate, and avoids some possibly erroneous calculations.  相似文献   

10.
31P-NMR measurements of the concentrations of phosphorus-containing metabolites in mammalian cells immobilised and perifused with glucose and glutamine as sole carbon source have shown that the intracellular Pi concentration is significantly higher in cells perifused with glutamine than with glucose. The data are consistent with the proposal that the rate of glutamine utilisation may be controlled by the activity of phosphate-activated glutaminase.  相似文献   

11.
Alanine and glutamine transport have been studied during red blood cell maturation in the rat. Kinetic parameters of Na+-dependent L-alanine transport were:K m 0.43 and 1.88 mM andV max 158 and 45 nmoles/ml ICW/min for reticulocytes and erythrocytes, respectively. During red cell maturation in the rat there is a loss of capacity and affinity of the system ASC for L-alanine transport. The values for Na+-dependent L-glutamine transport in reticulocytes wereK m 0.51 mM andV max 157 nmoles/ml ICW/min. On the other hand, a total loss of L-glutamine transport mediated by both N and ASC systems is demonstrated in mature red cells. This seems to indicate that during rat red cell maturation the system N disappears. Furthermore, the system ASC specificity in mature cells changes, and glutamine enters the red cell by non-mediated diffusion processes.  相似文献   

12.
Euglena gracilis was found to contain a peroxidase that specifically require L-ascorbic acid as the natural electron donor in the cytosol. The presence of an oxidation-reduction system metabolizing L-ascorbic acid was demonstrated in Euglena cells. Oxidation of L-ascorbic acid by the peroxidase, and the absence of ascorbic acid oxidase activity, suggests that the system functions to remove H2O2 in E. gracilis, which lacks catalase.  相似文献   

13.
An investigation was conducted of the parametric dependence of cell lysis observed when mammalian cells growing in suspension are subjected intermittently to intense hydrodynamic forces. Two flow devices were tested: one consisting of a sudden contraction into a short length of capillary tubing, in which turbulent flow is obtained, and another consisting of a smoothly converging and diverging tube, in which laminar flow is obtained. Changes in the cell line and the serum level in which the cells were grown and subjected to flow trauma both affected the specific lysis rate (fraction of cells lysed per pass through the flow device) in the turbulent flow device. The threshold value of the average wall shear stress level was approximately the same in the turbulent and laminar flow devices (1500–1800 dyn/cm2). Increasing the viscosity of the medium with 70,000 MW dextran had no effect on the specific lysis rate in either flow device.  相似文献   

14.
The formation of glutamine and alanine in skeletal muscle   总被引:25,自引:0,他引:25  
  相似文献   

15.
125I-Labelled alpha 2-macroglobulin-trypsin complex (125I-labelled alpha 2-macroglobulin X trypsin) was associated to isolated rat adipocytes and hepatocytes with a half-time of about 60 min at 37 degrees C. The association of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin X trypsin was inhibited by unlabelled alpha 2-macroglobulin X trypsin with a half-inhibition constant of about 8 micrograms/ml (11 nM). 125I-Labelled alpha 2-macroglobulin became cell-associated to a smaller extent (10-40% of that of alpha 2-macroglobulin X trypsin) and the half-inhibition constant was about 35 micrograms/ml in adipocytes. The cell association of 125I-labelled alpha 2-macroglobulin X trypsin was markedly inhibited by dansylcadaverine, bacitracin, omission of Ca2+ from the medium or pretreatment of the cells with trypsin. After incubation for 180 min more than 60% of the cell-associated 125I-labelled alpha 2-macroglobulin X trypsin was not removed by treatment of the cells with trypsin-EDTA and represented probably internalized material. 125I-Labelled alpha 2-macroglobulin X trypsin was degraded to trichloroacetic acid-soluble fragments by suspensions of both cell types but only to a negligible extent by incubation media preincubated with these cells. The rate of degradation of 0.5 micrograms/ml 125I-labelled alpha 2-macroglobulin was approx. 40% of that of 125I-labelled alpha 2-macroglobulin X trypsin. Degradation of 125I-labelled alpha 2-macroglobulin X trypsin was abolished by a high concentration (0.5 mg/ml) of alpha 2-macroglobulin X trypsin. It is concluded that alpha 2-macroglobulin X trypsin by a specific and saturable mechanism is bound to, internalized and degraded by isolated rat adipocytes and hepatocytes.  相似文献   

16.
End products of glucose and glutamine metabolism by cultured cell lines   总被引:2,自引:0,他引:2  
Rates of CO2 production from glucose and glutamine, intracellular metabolite levels, and release of metabolic end products into the culture medium were determined for 13 cultured cell lines, including a glycolysis-defective mutant. All the non-mutant lines synthesized pyruvate, lactate, alanine, proline, aspartate, and citrate, so that the metabolism of glucose and glutamine resulted mainly in the production of these compounds and only to a lesser extent in complete oxidation to CO2. These data and the pattern of metabolites produced by the mutant line were consistent with a model characterized by incomplete glutamine oxidation leading to end product accumulation. Multiple linear regression analysis identified the metabolite levels most highly correlated with the intracellular citrate level and with the amount of citrate released into the medium. The analysis also showed that the rates of CO2 production from glucose and glutamine were themselves positively correlated, suggesting that the oxidation of the two substrates is coordinately controlled under normal culture conditions.  相似文献   

17.
Kinetic expressions for the fermentative production of relatively high concentrations [12% (w/v)] of ethanol have been examined. Several expressions which account for both substrate and product inhibition have been formulated, and have been applied to suspended cell and immobilized cell reactors. Experimental data have been used to validate the kinetic expressions used, and the impact of combined inhibition on optimal reactor configuration has been assessed. The process implications of combined substrate and product inhibition for suspended and immobilized cell systems have been discussed.  相似文献   

18.
19.
A method for the quantitative assay of mammalian cell micropermeabilization is described. The method is based on the permeabilization-induced loss of endogenous glycolytic cofactors and consequent discontinuation of cellular lactate production. Advantages of the method include sensitivity and precision similar to that of micropermeabilization assays based on the release of 86Rb+ from preloaded cells, avoidance of radioactivity, and simplicity of the measurements and equipment required.  相似文献   

20.
Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号