共查询到20条相似文献,搜索用时 9 毫秒
1.
Francisco A. Iñesta-Vaquera David G. Campbell Cathy Tournier Nestor Gómez Jose M. Lizcano A. Cuenda 《Cellular signalling》2010,22(12):1829-1837
ERK5 is a member of the mitogen-activated protein kinase (MAPK) family that, after stimulation, is activated selectively by dual phosphorylation in the TEY motif by MAPK kinase 5 (MEK5). ERK5 plays an important role in regulating cell proliferation, survival, differentiation and stress response. Moreover, it is involved in G2/M progression and timely mitotic entry. ERK5 is phosphorylated during mitosis, but the molecular mechanism by which it is regulated during this phase is still unclear. Here we show that although ERK5 is phosphorylated in mitosis, this does not occur on the activation motif (TEY), but at its C-terminal half. We have identified five sites of ERK5 phosphorylation in mitosis, two of them unknown. Furthermore, we demonstrate that ERK5 phosphorylation in mitosis is not MEK5-dependent, but rather, cyclin-dependent kinase (CDK)-dependent. Using a mutagenesis approach, we analysed the importance of the phosphorylated residues in ERK5 function; our evidence show that phosphorylation in mitosis of the residues identified inhibits ERK5 activity and regulates ERK5 shuttling from cytoplasm to the nucleus. These results reveal a previously unreported form of ERK5 regulation by phosphorylation and establish a link between CDK and ERK5 pathways during mitosis, which could be crucial for the correct progression of the cell cycle. 相似文献
2.
Milli-calpain, a member of the ubiquitous cysteine protease family, is known to control late events of cell-cell fusion in skeletal muscle tissue through its involvement in cell membrane and cytoskeleton component reorganization. In this report, we describe the characterization of m-calpain compartmentalization and activation during the initial steps of muscle precursor cell recruitment and differentiation. By immunofluorescence analysis, we show that m-calpain is present throughout the cell cycle in the nucleus of proliferating myoblast C2 cells. However, when myoblasts enter a quiescent/G0 stage, m-calpain staining is detected only in the cytoplasm. Moreover, comparison of healthy and injured muscle shows distinct m-calpain localization in satellite stem cells. Indeed, m-calpain is not found in quiescent satellite cells, but following muscle injury, when satellite cells start to proliferate, m-calpain appears in the nucleus. To determine the implication of m-calpain during the cell cycle progression, quiescent myoblasts were forced to re-enter the cell cycle in the presence or not of the specific calpain inhibitor MDL 28170. We demonstrate that this calpain inhibitor blocks the cell cycle, prevents accumulation of MyoD in the G1 phase and enhances Myf5 expression. These data support an important new role for m-calpain in the control of muscle precursor cell activation and thus suggest its possible implication during the initial events of muscle regeneration. 相似文献
3.
4.
Jun Sheng Kun Liu Dawei Sun Piming Nie Zhiping Mu Hui Chen Zhengfeng Zhang 《Journal of cellular and molecular medicine》2021,25(16):8039-8046
RAD52 motif-containing 1 (RDM1), a key regulator of DNA double-strand break repair and recombination, has been reported to play an important role in the development of various human cancers, such as papillary thyroid carcinoma, neuroblastoma and lung cancer. However, the effect of RDM1 on osteosarcoma (OS) progression remains unclear. Here, this study mainly explored the connection between RDM1 and OS progression, as well as the underlying mechanism. It was found that RDM1 was highly expressed in OS cells compared with human osteoblast cells. Knockdown of RDM1 caused OS cell proliferation inhibition, cell apoptosis promotion and cell cycle arrest at G1 stage, whereas RDM1 overexpression resulted in the opposite phenotypes. Furthermore, RDM1 silencing leads to a significant decrease in tumour growth in xenograft mouse model. RDM1 also increased the protein levels of MEK 1/2 and ERK 1/2. All these findings suggest that RDM1 plays an oncogenic role in OS via stimulating cell cycle transition from G1 to S stage, and regulating MEK/ERK signalling pathway, providing a promising therapeutic factor for the treatment of OS. 相似文献
5.
6.
The role of genetic mutations in the development of polycystic kidney disease (PKD), such as alterations in PKD1 and PKD2 genes in autosomal dominant PKD (ADPKD), is well understood. However, the significance of epigenetic mechanisms in the progression of PKD remains unclear and is increasingly being investigated. The term of epigenetics describes a range of mechanisms in genome function that do not solely result from the DNA sequence itself. Epigenetic information can be inherited during mammalian cell division to sustain phenotype specifically and physiologically responsive gene expression in the progeny cells. A multitude of functional studies of epigenetic modifiers and systematic genome-wide mapping of epigenetic marks reveal the importance of epigenomic mechanisms, including DNA methylation, histone/chromatin modifications and non-coding RNAs, in PKD pathologies. Deregulated proliferation is a characteristic feature of cystic renal epithelial cells. Moreover, defects in many of the molecules that regulate the cell cycle have been implicated in cyst formation and progression. Recent evidence suggests that alterations of DNA methylation and histone modifications on specific genes and the whole genome involved in cell cycle regulation and contribute to the pathogenesis of PKD. This review summarizes the recent advances of epigenetic mechanisms in PKD, which helps us to define the term of “PKD epigenetics” and group PKD epigenetic changes in three categories. In particularly, this review focuses on the interplay of epigenetic mechanisms with cell cycle regulation during normal cell cycle progression and cystic cell proliferation, and discusses the potential to detect and quantify DNA methylation from body fluids as diagnostic/prognostic biomarkers. Collectively, this review provides concepts and examples of epigenetics in cell cycle regulation to reveal a broad view of different aspects of epigenetics in biology and PKD, which may facilitate to identify possible novel therapeutic intervention points and to explore epigenetic biomarkers in PKD. 相似文献
7.
8.
9.
10.
Marc J Mulner-Lorillon O Bellé R 《Biology of the cell / under the auspices of the European Cell Biology Organization》2004,96(3):245-249
Cell-cycle dysregulation is a hallmark of tumor cells and human cancers. Failure in the cell-cycle checkpoints leads to genomic instability and subsequent development of cancers from the initial affected cell. A worldwide used product Roundup 3plus, based on glyphosate as the active herbicide, was suggested to be of human health concern since it induced cell cycle dysfunction as judged from analysis of the first cell division of sea urchin embryos, a recognized model for cell cycle studies. Several glyphosate-based pesticides from different manufacturers were assayed in comparison with Roundup 3plus for their ability to interfere with the cell cycle regulation. All the tested products, Amega, Cargly, Cosmic, and Roundup Biovert induced cell cycle dysfunction. The threshold concentration for induction of cell cycle dysfunction was evaluated for each product and suggests high risk by inhalation for people in the vicinity of the pesticide handling sprayed at 500 to 4000 times higher dose than the cell-cycle adverse concentration. 相似文献
11.
12.
Tyson JJ Csikasz-Nagy A Novak B 《BioEssays : news and reviews in molecular, cellular and developmental biology》2002,24(12):1095-1109
Major events of the cell cycle--DNA synthesis, mitosis and cell division-are regulated by a complex network of protein interactions that control the activities of cyclin-dependent kinases. The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. Computer simulations are necessary for detailed quantitative comparisons between theory and experiment, but they give little insight into the qualitative dynamics of the control system and how molecular interactions determine the fundamental physiological properties of cell replication. To that end, bifurcation diagrams are a useful analytical tool, providing new views of the dynamical organization of the cell cycle, the role of checkpoints in assuring the integrity of the genome, and the abnormal regulation of cell cycle events in mutants. These claims are demonstrated by an analysis of cell cycle regulation in fission yeast. 相似文献
13.
Mathematical models of cell cycle regulation 总被引:1,自引:0,他引:1
The cell division cycle is a fundamental process of cell biology and a detailed understanding of its function, regulation and other underlying mechanisms is critical to many applications in biotechnology and medicine. Since a comprehensive analysis of the molecular mechanisms involved is too complex to be performed intuitively, mathematical and computational modelling techniques are essential. This paper is a review and analysis of recent approaches attempting to model cell cycle regulation by means of protein-protein interaction networks. 相似文献
14.
Polyadenylation of eukaryotic mRNAs in the nucleus promotes their translation following export to the cytoplasm and is an important determinant of mRNA stability. An additional level of control of gene expression is provided by cytoplasmic polyadenylation, which activates translation of a number of mRNAs important in orchestrating cell cycle events in oocytes. Recent studies indicate that cytoplasmic polyadenylation may be a mechanism of translational activation that is more widespread in eukaryotic cells. Here we discuss the roles of a recently identified family of nucleotidyl transferases (encoded by the cid1 gene family) in cell cycle regulation. To date, this family has been characterised mainly in yeasts, but it is conserved throughout the eukaryotes. Biochemical studies have indicated that a subset of members of this family function as cytoplasmic poly(A) polymerases targeting specific mRNAs for translation. This form of translational control appears to be particularly important for cell cycle regulation following inhibition of DNA synthesis. 相似文献
15.
Yong-Bin Yan 《Amino acids》2016,48(8):1775-1784
16.
Anil Kumar Dudani Lalit K. Srivastava Rajendra Prasad 《Biochemical and biophysical research communications》1984,119(3):962-967
The status of glyoxalase-I was explored in exponentially growing and G1 arrested temperature sensitive (ts) cell division cycle (cdc) mutants of Saccharomyces cerevisiae. It was observed that the specific activity of this enzyme was correlated with overall growth status. The activity was high in actively growing cells and was low in G1 arrested cells. Specific activities of glyoxalase-I were also low in G1 arrested prolonged stationary phase (PSP) cells of S. cerevisiae and Candida albicans. The activity of glyoxalase-I recovered when G1 arrested S. cerevisiae (ts) cells were allowed to regrow under permissive conditions. Results demonstrate that although glyoxalase-I activity is a good indicator of cell growth status, it is not involved in cell cycle regulation of this eukaryotic organism. 相似文献
17.
Transcriptional regulation in the eukaryotic cell cycle. 总被引:9,自引:0,他引:9
18.
Cycle-regulated genes and cell cycle regulation. 总被引:2,自引:0,他引:2
R D'Ari 《BioEssays : news and reviews in molecular, cellular and developmental biology》2001,23(7):563-565
19.