首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperuricemia is a significant factor in a variety of diseases, including gout and cardiovascular diseases. Although renal excretion largely determines plasma urate concentration, the molecular mechanism of renal urate handling remains elusive. Previously, we identified a major urate reabsorptive transporter, URAT1 (SLC22A12), on the apical side of the renal proximal tubular cells. However, it is not known how urate taken up by URAT1 exits from the tubular cell to the systemic circulation. Here, we report that a sugar transport facilitator family member protein GLUT9 (SLC2A9) functions as an efflux transporter of urate from the tubular cell. GLUT9-expressed Xenopus oocytes mediated saturable urate transport (K(m): 365+/-42 microm). The transport was Na(+)-independent and enhanced at high concentrations of extracellular potassium favoring negative to positive potential direction. Substrate specificity and pyrazinoate sensitivity of GLUT9 was distinct from those of URAT1. The in vivo role of GLUT9 is supported by the fact that a renal hypouricemia patient without any mutations in SLC22A12 was found to have a missense mutation in SLC2A9, which reduced urate transport activity in vitro. Based on these data, we propose a novel model of transcellular urate transport in the kidney; urate [corrected] is taken up via apically located URAT1 and exits the cell via basolaterally located GLUT9, which we suggest be renamed URATv1 (voltage-driven urate transporter 1).  相似文献   

2.
Until recently, the only facilitated hexose transporter GLUT proteins (SLC2A) known to transport fructose were GLUTs 2 and 5. However, the recently cloned GLUT7 can also transport fructose as well as glucose. Comparison of sequence alignments indicated that GLUTs 2, 5, and 7 all had an isoleucine residue at position "314" (GLUT7), whereas the non-fructose-transporting isoforms, GLUTs 1, 3, and 4, had a valine at this position. Mutation of Ile-314 to a valine in GLUT7 resulted in a loss of fructose transport, whereas glucose transport remained completely unaffected. Similar results were obtained with GLUTs 2 and 5. Energy minimization modeling of GLUT7 indicated that Ile-314 projects from transmembrane domain 7 (TM7) into the lumen of the aqueous pore, where it could form a hydrophobic interaction with tryptophan 89 from TM2. A valine residue at 314 appeared to produce a narrowing of the vestibule when compared with the isoleucine. It is proposed that this hydrophobic interaction across the pore forms a selectivity filter restricting the access of some hexoses to the substrate binding site(s) within the aqueous channel. The presence of a selectivity filter in the extracellular vestibule of GLUT proteins would allow for subtle changes in substrate specificity without changing the kinetic parameters of the protein.  相似文献   

3.
Olsowski A  Monden I  Krause G  Keller K 《Biochemistry》2000,39(10):2469-2474
Cysteine scanning mutagenesis in conjunction with site-directed chemical modification of sulfhydryl groups by p-chloromercuribenzenesulfonate (pCMBS) or N-ethylmaleimide (NEM) was applied to putative transmembrane segments (TM) 2 and 7 of the cysteine-less glucose transporter GLUT1. Valid for both helices, the majority of cysteine substitution mutants functioned as active glucose transporters. The residues F72, G75, G76, G79, and S80 within helix 2 and G286 and N288 within helix 7 were irreplaceable because the mutant transporters displayed transport activities that were lower than 10% of Cys-less GLUT1. The indicated cluster of glycine residues within TM 2 is located on one face of the helix and may provide space for a bulky hydrophobic counterpart interacting with another transmembrane segment or lipid side chains. Characteristic for helix 7, three glutamine residues (Q279, Q282, and Q283) played an important role in transport activity of Cys-less GLUT1 because an individual replacement with cysteine reduced their transport rates by about 80%. ParaCMBS-sensitivity scanning of both transmembrane segments detected several membrane-harbored residues to be accessible to the extracellular aqueous solvent. The pCMBS-reactive sulfhydryl groups were located exclusively in the exofacial half of the plasma membrane and, when presented in a helical model, lie along one side of the helices. Taken together, transmembrane segments 2 and 7 form clefts accessible to the extracellular aqueous solvent. The lining residues are however excluded from interaction with intracellular solutes, as justified by microinjection of pCMBS into the cytoplasm of Xenopus oocytes.  相似文献   

4.
Excitatory amino acid transporter 2 (EAAT2), the gene of which is known as solute carrier family 1 member 2 (SLC1A2), is an important membrane-bound transporter that mediates approximately 90% of the transport and clearance of l -glutamate at synapses in the central nervous system (CNS). Transmembrane domain 2 (TM2) of EAAT2 is close to hairpin loop 2 (HP2) and far away from HP1 in the inward-facing conformation. In the present study, 14 crucial amino acid residues of TM2 were identified via alanine-scanning mutations. Further analysis in EAAT2-transfected HeLa cells in vitro showed that alanine substitutions of these residues resulted in a decrease in the efficiency of trafficking/targeting to the plasma membrane and/or reduced functionality of membrane-bound, which resulted in impaired transporter activity. After additional mutations, the transporter activities of some alanine-substitution mutants recovered. Specifically, the P95A mutant decreased EAAT2-associated anion currents. The Michaelis constant (Km) values of the mutant proteins L85A, L92A and L101A were increased significantly, whereas R87 and P95A were decreased significantly, indicating that the mutations L85A, L92A and L101A reduced the affinity of the transporter and the substrate, whereas R87A and P95A enhanced this affinity. The maximum velocity (Vmax) values of all 14 alanine mutant proteins were decreased significantly, indicating that all these mutations reduced the substrate transport rate. These results suggest that critical residues in TM2 affect not only the protein expression and membrane-bound localization of EAAT2, but also its interactions with substrates. Additionally, our findings elucidate that the P95A mutant decreased EAAT2-related anion currents. Our results indicate that the TM2 of EAAT2 plays a vital role in the transport process. The key residues in TM2 affect protein expression in the membrane, substrate transport and the anion currents of EAAT2.  相似文献   

5.
During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A (SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUT family can be divided into three subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myo-inositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intra-cellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H+/myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.  相似文献   

6.
During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A ( SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUTfamily can be divided intothree subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myoinositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intracellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H + /myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.  相似文献   

7.
In this study we tested the hypothesis that functional erythrocyte-type glucose transporters (GLUT1) exist as oligomeric complexes by expressing chimeric transporter proteins in Chinese hamster ovary cells harboring endogenous GLUT1 transporters. The chimeric transporters were GLUT1-4c, in which the 29 C-terminal residues of human GLUT1 were replaced by the 30 C-terminal residues of rat skeletal muscle glucose transporter (GLUT4), and GLUT1n-4, containing the N-terminal 199 residues of GLUT1 and the 294 C-terminal residues of GLUT4. Endogenous GLUT1 was quantitatively co-immunoprecipitated by using an anti-GLUT4 C-terminal peptide antibody from detergent extracts of Chinese hamster ovary cells expressing either of the chimeric proteins, as detected by immunoblotting the precipitates with an anti-GLUT1 C-terminal peptide antiserum. No co-immunoprecipitation of native GLUT1 with native GLUT4 from extracts of 3T3-L1 adipocytes, which contain both these transporters, was observed with the same antibody. These data are consistent with the hypothesis that GLUT1 transporters exist as homodimers or higher order oligomers and that a major determinant of oligomerization is located within the first 199 residues of GLUT1.  相似文献   

8.
Chemotaxis to the aromatic acid 4-hydroxybenzoate (4-HBA) by Pseudomonas putida is mediated by PcaK, a membrane-bound protein that also functions as a 4-HBA transporter. PcaK belongs to the major facilitator superfamily (MFS) of transport proteins, none of which have so far been implicated in chemotaxis. Work with two well-studied MFS transporters, LacY (the lactose permease) and TetA (a tetracycline efflux protein), has revealed two stretches of amino acids located between the second and third (2-3 loop) and the eighth and ninth (8-9 loop) transmembrane regions that are required for substrate transport. These sequences are conserved among most MFS transporters, including PcaK. To determine if PcaK has functional requirements similar to those of other MFS transport proteins and to analyze the relationship between the transport and chemotaxis functions of PcaK, we generated strains with mutations in amino acid residues located in the 2-3 and 8-9 loops of PcaK. The mutant proteins were analyzed in 4-HBA transport and chemotaxis assays. Cells expressing mutant PcaK proteins had a range of phenotypes. Some transported at wild-type levels, while others were partially or completely defective in 4-HBA transport. An aspartate residue in the 8-9 loop that has no counterpart in LacY and TetA, but is conserved among members of the aromatic acid/H(+) symporter family of the MFS, was found to be critical for 4-HBA transport. These results indicate that conserved amino acids in the 2-3 and 8-9 loops of PcaK are required for 4-HBA transport. Amino acid changes that decreased 4-HBA transport also caused a decrease in 4-HBA chemotaxis, but the effect on chemotaxis was sometimes slightly more severe. The requirement of PcaK for both 4-HBA transport and chemotaxis demonstrates that P. putida has a chemoreceptor that differs from the classical chemoreceptors described for Escherichia coli and Salmonella typhimurium.  相似文献   

9.
Glaucoma, cataracts, and proximal renal tubular acidosis are diseases caused by point mutations in the human electrogenic Na(+) bicarbonate cotransporter (NBCe1/SLC4A4) (1, 2). One such mutation, R298S, is located in the cytoplasmic N-terminal domain of NBCe1 and has only moderate (75%) function. As SLC transporters have high similarity in their membrane and N-terminal primary sequences, we homology-modeled NBCe1 onto the crystal structure coordinates of Band 3(AE1) (3). Arg-298 is predicted to be located in a solvent-inaccessible subsurface pocket and to associate with Glu-91 or Glu-295 via H-bonding and charge-charge interactions. We perturbed these putative interactions between Glu-91 and Arg-298 by site-directed mutagenesis and used expression in Xenopus oocyte to test our structural model. Mutagenesis of either residue resulted in reduced transport function. Function was "repaired" by charge reversal (E91R/R298E), implying that these two residues are interchangeable and interdependent. These results contrast the current understanding of the AE1 N terminus as protein-binding sites and propose that hkNBCe1 (and other SLC4) cytoplasmic N termini play roles in controlling HCO(3)(-) permeation.  相似文献   

10.
SNAT (sodium-coupled neutral amino acid transporter) 2 belongs to the SLC38 (solute carrier 38) family of solute transporters. Transport of one amino acid molecule into the cell is driven by the co-transport of one Na(+) ion. The functional significance of the C-terminus of SNAT2, which is predicted to be located in the extracellular space, is currently unknown. In the present paper, we removed 13 amino acid residues from the SNAT2 C-terminus and studied the effect of this deletion on transporter function. The truncation abolished amino acid transport currents at negative membrane potentials (<0 mV), as well as substrate uptake. However, transport currents were observed at positive membrane potentials demonstrating that transport was accelerated while the driving force decreased. Membrane expression levels were normal in the truncated transporter. SNAT2(Del C-ter) (13 residues deleted from the C-terminus) showed 3-fold higher apparent affinity for alanine, and 2-fold higher Na(+) affinity compared with wild-type SNAT2, suggesting that the C-terminus is not required for high-affinity substrate and Na(+) interaction with SNAT2. The pH sensitivity of amino acid transport was retained partially after the truncation. In contrast with the truncation after TM (transmembrane domain) 11, the deletion of TM11 resulted in an inactive transporter, most probably due to a defect in cell surface expression. Taken together, the results demonstrate that the C-terminal domain of SNAT2 is an important voltage regulator that is required for a normal amino acid translocation process at physiological membrane potentials. However, the C-terminus appears not to be involved in the regulation of membrane expression.  相似文献   

11.
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.  相似文献   

12.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   

13.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H(158)WHD(161). To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

14.
Renal hypouricemia (MIM 220150) is an inherited disorder characterized by low serum uric acid levels and has severe complications such as exercise-induced acute renal failure and urolithiasis. We have previously reported that URAT1/SLC22A12 encodes a renal urate-anion exchanger and that its mutations cause renal hypouricemia type 1 (RHUC1). With the large health-examination database of the Japan Maritime Self-Defense Force, we found two missense mutations (R198C and R380W) of GLUT9/SLC2A9 in hypouricemia patients. R198C and R380W occur in highly conserved amino acid motifs in the “sugar transport proteins signatures” that are observed in GLUT family transporters. The corresponding mutations in GLUT1 (R153C and R333W) are known to cause GLUT1 deficiency syndrome because arginine residues in this motif are reportedly important as the determinants of the membrane topology of human GLUT1. Therefore, on the basis of membrane topology, the same may be true of GLUT9. GLUT9 mutants showed markedly reduced urate transport in oocyte expression studies, which would be the result of the loss of positive charges in those conserved amino acid motifs. Together with previous reports on GLUT9 localization, our findings suggest that these GLUT9 mutations cause renal hypouricemia type 2 (RHUC2) by their decreased urate reabsorption on both sides of the renal proximal tubule cells. However, a previously reported GLUT9 mutation, P412R, was unlikely to be pathogenic. These findings also enable us to propose a physiological model of the renal urate reabsorption via GLUT9 and URAT1 and can lead to a promising therapeutic target for gout and related cardiovascular diseases.  相似文献   

15.
Renal hypouricemia (MIM 220150) is an inherited disorder characterized by low serum uric acid levels and has severe complications such as exercise-induced acute renal failure and urolithiasis. We have previously reported that URAT1/SLC22A12 encodes a renal urate-anion exchanger and that its mutations cause renal hypouricemia type 1 (RHUC1). With the large health-examination database of the Japan Maritime Self-Defense Force, we found two missense mutations (R198C and R380W) of GLUT9/SLC2A9 in hypouricemia patients. R198C and R380W occur in highly conserved amino acid motifs in the "sugar transport proteins signatures" that are observed in GLUT family transporters. The corresponding mutations in GLUT1 (R153C and R333W) are known to cause GLUT1 deficiency syndrome because arginine residues in this motif are reportedly important as the determinants of the membrane topology of human GLUT1. Therefore, on the basis of membrane topology, the same may be true of GLUT9. GLUT9 mutants showed markedly reduced urate transport in oocyte expression studies, which would be the result of the loss of positive charges in those conserved amino acid motifs. Together with previous reports on GLUT9 localization, our findings suggest that these GLUT9 mutations cause renal hypouricemia type 2 (RHUC2) by their decreased urate reabsorption on both sides of the renal proximal tubule cells. However, a previously reported GLUT9 mutation, P412R, was unlikely to be pathogenic. These findings also enable us to propose a physiological model of the renal urate reabsorption via GLUT9 and URAT1 and can lead to a promising therapeutic target for gout and related cardiovascular diseases.  相似文献   

16.
Plasma membrane monoamine transporter (PMAT or ENT4) is a newly cloned transporter assigned to the equilibrative nucleoside transporter (ENT) family (SLC29). Unlike ENT1-3, PMAT mainly functions as a polyspecific organic cation transporter. In this study, we investigated the molecular mechanisms underlying the unique substrate selectivity of PMAT. By constructing chimeras between human PMAT and ENT1, we showed that a chimera consisting of transmembrane domains (TM) 1-6 of PMAT and TM7-11 of hENT1 behaved like PMAT, transporting 1-methyl-4-phenylpyridinium (MPP+, an organic cation) but not uridine (a nucleoside), suggesting that TM1-6 contains critical domains responsible for substrate recognition. To identify residues important for the cation selectivity of PMAT, 10 negatively charged residues were chosen and substituted with alanine. Five of the alanine mutants retained PMAT activity, and four were non-functional due to impaired targeting to the plasma membrane. However, alanine substitution at Glu(206) in TM5 abolished PMAT activity without affecting cell surface expression. Eliminating the charge at Glu(206) (E206Q) resulted in loss of organic cation transport activity, whereas conserving the negative charge (E206D) restored transporter function. Interestingly, mutant E206Q, which possesses the equivalent residue in ENT1, gained uridine transport activity. Thr(220), another residue in TM5, also showed an effect on PMAT activity. Helical wheel analysis of TM5 revealed a distinct amphipathic pattern with Glu(206) and Thr(220) clustered in the center of the hydrophilic face. In summary, our results suggest that Glu(206) functions as a critical charge sensor for cationic substrates and TM5 forms part of the substrate permeation pathway in PMAT.  相似文献   

17.
18.
The multidrug resistance protein 1 (MRP1) mediates drug and organic anion efflux across the plasma membrane. The 17 transmembrane (TM) helices of MRP1 are linked by extracellular and cytoplasmic (CL) loops of various lengths and two cytoplasmic nucleotide binding domains. In this study, three basic residues clustered at the predicted TM15/CL7 interface were investigated for their role in MRP1 expression and activity. Thus, Arg1138, Lys1141, and Arg1142 were replaced with residues of the same or opposite charge, expressed in human embryonic kidney cells, and the properties of the mutant proteins were assessed. Neither Glu nor Lys substitutions of Arg1138 and Arg1142 affected MRP1 expression; however, all four mutants showed a decrease in organic anion transport with a relatively greater decrease in leukotriene C4 and glutathione transport. These mutations also modulated MRP1 ATPase activity as reflected by a decreased vanadate-induced trapping of 8-azido-[32P]ADP. Mutation of Lys1141 to either Glu or Arg reduced MRP1 expression, and routing to the plasma membrane was impaired. However, only the Glu-substituted Lys1141 mutant showed a decrease in organic anion transport, and this was associated with decreased substrate binding and vanadate-induced trapping of 8-azido-ADP. These studies identified a cluster of basic amino acids likely at the TM15/CL7 interface as a region important for both MRP1 expression and activity and demonstrated that each of the three residues plays a distinct role in the substrate specificity and catalytic activity of the transporter.  相似文献   

19.
The proteins from the ZIP and the CDF families of zinc transporters contain a histidine-rich sequence in a loop domain located between transmembrane domains III and IV for the ZIP family and transmembrane domains IV and V for the CDF family. Topological predictions suggest that these loops are located in the cytoplasm. The loops contain a histidine-rich sequence with a variable number of histidine residues depending on the transporter. The histidine-rich sequence was postulated to serve as an extra-membrane metal binding site in these proteins. hZip1 is a human zinc transporter ubiquitously expressed. The histidine-rich motif located in the large loop of this transporter is composed of the following sequence, H158WHD161. To determine if this motif is involved in the zinc transport activity of the protein, we performed site directed-mutagenesis to replace the loop histidines with alanines. Results suggest that both histidines are necessary for the zinc transport function and are not involved in the plasma membrane localization of the transporter as has been reported for the Zrt1 transporter in yeast. In addition, two histidine residues in transmembrane domains IV and V are also important in the zinc transport function. The results support an intermolecular exchange mechanism of zinc transport.  相似文献   

20.
Subunit a of the vacuolar H(+)-ATPases plays an important role in proton transport. This membrane-integral 100-kDa subunit is thought to form or contribute to proton-conducting hemichannels that allow protons to gain access to and leave buried carboxyl groups on the proteolipid subunits (c, c', and c″) during proton translocation. We previously demonstrated that subunit a contains a large N-terminal cytoplasmic domain followed by a C-terminal domain containing eight transmembrane (TM) helices. TM7 contains a buried arginine residue (Arg-735) that is essential for proton transport and is located on a helical face that interacts with the proteolipid ring. To further define the topology of the C-terminal domain, the accessibility of 30 unique cysteine residues to the membrane-permeant reagent N-ethylmaleimide and the membrane-impermeant reagent polyethyleneglycol maleimide was determined. The results further define the borders of transmembrane segments in subunit a. To identify additional buried polar and charged residues important in proton transport, 25 sites were individually mutated to hydrophobic amino acids, and the effect on proton transport was determined. These and previous results identify a set of residues important for proton transport located on the cytoplasmic half of TM7 and TM8 and the lumenal half of TM3, TM4, and TM7. Based upon these data, we propose a tentative model in which the cytoplasmic hemichannel is located at the interface of TM7 and TM8 of subunit a and the proteolipid ring, whereas the lumenal hemichannel is located within subunit a at the interface of TM3, TM4, and TM7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号