首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The present study examined the role of the cytoskeleton in sperm entry and migration through the egg cytoplasm during fertilization in the zebra mussel, Dreissena polymorpha (Bivalvia: Veneroida: Dreissenidae). Fertilization in this freshwater bivalve occurs outside the mantle cavity, permitting detailed observations of fertilization. After its initial binding to the egg surface, the sperm is incorporated in two stages: (1) a gradual incorporation of the sperm nucleus into the egg cortex, followed by (2) a more rapid incorporation of the sperm axoneme, and translocation of the sperm head through the egg cytoplasm. Initial incorporation into the egg cortex was shown to be microfilament dependent. Microfilaments were found in the sperm's preformed acrosomal filament, the microvilli on the egg surface, and in an actin-filled insemination cone surrounding the incorporating sperm. Treatment of eggs with cytochalasin B inhibited sperm entry in a dose- and time-dependent manner. Microtubule polymerization was not necessary for initial sperm entry. Following incorporation of the sperm head, the flagellar axoneme entered the egg cytoplasm and remained active for several minutes. Associated with the incorporated axoneme was a flow of cytoplasmic particles originating near the proximal end of the flagella. Inhibition of microtubule polymerization prevented entry of the sperm axoneme, and the subsequent cytoplasmic current was not observed. After sperm incorporation into the egg cortex, no appreciable microfilaments were associated with the sperm nucleus. A diminutive sperm aster was associated with the sperm nucleus during its decondensation, but no obvious extension toward the female pronucleus was observed. The sperm aster was significantly smaller than the spindle associated with the female pronucleus, suggesting a reduced role for the sperm aster in amphimixis.  相似文献   

2.
The pathway of sperm entry during sea urchin fertilization was analyzed by using sperm covalently labeled with fluorescent and radioactive tracers. Sperm that have been covalently labeled on their surfaces with fluorescein isothiocyanate (FITC) or a radioactive congener, diiodofluorescein isothiocyanate (125IFC), transfer labeled components to the egg that persist throughout early development. In order to study the transfer of sperm components and their fate after fertilization, cytochalasin B-dependent inhibition of fertilization, previously shown to permit the cortical reaction of sea urchin eggs but block sperm pronuclear incorporation, was investigated. Under certain conditions cytochalasin B or D (CB or CD) results in about half of the activated eggs having both the sperm nucleus and the fluorescently labeled sperm components arrested apparently at the level of the egg plasma membrane. This arrest of internalization was reversed by removal of CB or CD, and the sperm derivatives entered the egg. When sperm were labeled noncovalently with ethidium bromide or rhodamine 123, fluorescence was transferred to the egg in the cytochalasin-inhibited state in a fashion similar to that found in normal fertilization; in both cases the sperm fluorescence disappeared within a few minutes of fertilization, due to the repartitioning of the noncovalent dyes into the egg cytoplasm. It is concluded that cytochalasin arrests fertilization at an intermediate step in which the sperm has fused with the egg to achieve cytoplasmic continuity, but in which the subsequent internalization of sperm components is inhibited. After removal of cytochalasins the fluorescent sperm components move from the egg surface to an internal site, a process that can be monitored by time-lapse video microscopy with an image intensifier to permit extended observations of sperm fluorescence. The cytoplasmic location of labeled sperm components was substantiated by autoradiography of early embryos fertilized with 125IFC-labeled sperm; transfer of sperm components to an internal site was seen after fertilization of either sea urchin or mouse eggs. Taken together, the data suggest that the fate of the labeled sperm surface components, as well as that of the sperm nucleus, is to be transferred to the egg cytoplasm, and that this transfer is mediated by the actin-dependent cytoskeleton of the egg.  相似文献   

3.
Sperm ultrastructure and spermiogenesis of the three bivalve species Musculus discors, Nucula sulcata, and Dreissena polymorpha have been studied. During spermatid differentiation in Musculus discors and Nucula sulcata the nucleus attains an elongated rod-like shape. The spermatozoon from Nucula sulcata was found to have a cup-shaped acrosome and five mitochondria surrounding two centrioles in the middle piece. The spermatozoa from Musculus discors has a long complex acrosome. From the distal centriole striated processes extend and attach to the plasma membrane. The spermatozoon of the fresh water species Dreissena polymorpha agrees in all main features with those of other invertebrate groups with external fertilization. It is thus of the primitive type with barrel-shaped nucleus and four to five mitochondria1 spheres in the middle piece. The acrosome is a prominant, complex structure at the apex of the mature spermatozoon. A comparison of sperm ultrastructure among bivalves indicates that there is a certain correlation between the evolution of the elongated sperm nucleus and large, yolk-rich eggs. In species with an elongated sperm nucleus the increased egg size has often led to a lecithotrophic or direct development. The elongated nucleus is a slight modification of the primitive type. There is a great variation in acrosome structure among bivalve spermatozoa, reflecting diverging functional demands at fertilization of the eggs.  相似文献   

4.
The effects of selected concentrations of cytochalasins B (1-10 micrograms/ml; CB) and D (10, 50 micrograms/ml; CD) on the morphology and fertilization of zebra danio (Brachydanio) eggs were studied primarily with light and scanning electron microscopy. Eggs pretreated with either CB (10 micrograms/ml) or CD (10, 50 micrograms/ml) prepared in Fish Ringer's solution-0.5% DMSO showed a flattened shape, alterations in the form of surface microplicae and microvilli, and occasional spontaneous exocytosis of cortical granules. All eggs preincubated in either CB or CD were activated upon transfer to tap water, showing cortical granule exocytosis, elevation of the chorion, and formation of a fertilization cone. When eggs were pretreated for 5 minutes with 1-5 micrograms/ml CB or 10 micrograms/ml CD and inseminated, they incorporated the fertilizing sperm and typically developed to the two-cell stage. A single sperm cell attached to and fused with the sperm entry site microvilli but failed to enter the cytoplasm in eggs preincubated with 10 micrograms/ml CB. Eggs that were immersed continuously in either CB (10 micrograms/ml) or CD (50 micrograms/ml) 15 seconds after insemination also failed to incorporate the fertilizing sperm. Treatment of eggs after insemination with CD (10 micrograms/ml), however, did not prevent sperm cell incorporation or fertilization cone formation. Our drug data suggest the presence of actin-containing filaments in the danio egg before and following fertilization. These filaments appear to play a role in maintaining the shape of the egg cell and its surface specializations and in the incorporation of the fertilizing sperm. The fertilization cone appears to form independently of actin polymerization.  相似文献   

5.
In Mytilidae, mitochondrial DNA (mtDNA) in the offspring is inherited from male and female parents. Sperm mitochondria are only incorporated into the testes. This phenomenon is called doubly uniparental inheritance (DUI). Sperm mitochondria should locate in the primordial germ cell during development to maintain DUI. However, the mechanism of sperm mitochondria localization is still unknown. To reveal the mechanism, we followed the location of sperm mitochondria in Mytilus galloprovincialis zygotes fertilized with sperm stained by MitoTracker. Just after fertilization, sperm mitochondria, which were found to enter eggs from various sites, remained at sperm entry point. Five sperm mitochondria located at the male pronucleus. After pronuclear expansion, sperm mitochondria migrated to the center of the egg together with the male pronucleus. At anaphase of cleavage-I, the distribution pattern of sperm mitochondria was divided into two patterns. In pattern A, sperm mitochondria located in the equatorial region of the eggs. In pattern B, sperm mitochondria migrated and divided into two groups with chromosomes. From observations of colchicine-treated eggs, we suggest that sperm mitochondria migration from fertilization to anaphase of cleavage-I depends on the microtubules. The difference between pattern A and pattern B may be caused by whether sperm mitochondria migrated or not by the microtubules at cleavage-I.  相似文献   

6.
Eggs isolated from animals spawned with 10−3 M serotonin were inseminated with sperm concentrations ranging from 103–106 sperm/ml. Multiple sperm attached to the surface of the egg and sperm incorporation occurred within 3 min postinsemination (PI). Sperm mitochondria, centrioles, and flagellum were also incorporated. Incorporation was essentially complete by 6 min PI. In the egg cortex, the sperm head rotated 180°, and a rapid translocation of the sperm through the cytoplasm towards the egg interior began by 5–6 min PI. In heavily polyspermic inseminations, translocations of the sperm were either minimal or nonexistent. In monospermic eggs, nuclear decondensation occurred after translocation was complete, beginning by 9–10 min PI. A male pronucleus began to develop in the cytoplasm by 21 min PI and enlarged to 20 μm before fusing with the female pronucleus. Oscillation of the egg cytoplasm and mitotic spindle apparatus was observed immediately prior to cleavage. Cleavage occurred at 60 min PI. Sperm incorporation and pronuclear formation were confirmed with fluorescent and confocal microscopy using the DNA-specific dyes Hoescht 33342 and 7-aminoactinomycin D. In sperm concentrations >104 sperm/ml, 26–76% of the eggs exhibited polyspermy. The high incidence of polyspermy suggests that rapid, effective blocks to polyspermy were not present or were ineffective in a significant proportion of serotonin-spawned eggs. © 1996 Wiley-Liss, Inc.  相似文献   

7.
It has been shown recently that there is premature mitochondria biosynthesis in blastocysts from older women whose egg or embryo quality is poor and that aneuploid blastocysts also have a high number of mitochondrial DNA (mtDNA) copies. Whether nondiploidy/aneuploidy or reduced egg or embryo quality causes premature mitochondrial biosynthesis is not known. This study constructed haploid, diploid, triploid, and tetraploid blastocysts by parthenogenetic activation, intracytoplasmic sperm injection with one or two sperm heads, blastomere electrofusion, respectively, and generated reduced cytoplasm quality embryos from diabetic mouse and in vitro fertilization of aged oocytes, and examined whether nondiploidy or reduced cytoplasm quality causes premature mitochondrial biosynthesis. MtDNA numbers of each blastocyst from different models were tested by absolute quantitative real-time polymerase chain reaction. It was found that mtDNA content in preimplantation embryos was not associated with their chromosome ploidy, while mtDNA copy numbers in embryos with suboptimal quality were increased. Therefore, it might be the reduced cytoplasmic quality, and not chromosome nondiploidy, that causes premature mitochondria biosynthesis in blastocysts.  相似文献   

8.
No acid phosphatase activity was observed in the mature embryo sac of wheat (Triticum aestivum) except the chalazal cytoplasm Of the central cell before fertilization. During fertilization, acid phosphataseactivity was observed in the following loci: part of chromatin of the egg nucleus and most of the mitochondria in the egg cytoplasm; the perinuclear spaces of the egg and sperm nuclei at the fusion of the egg and sperm nuclei; the chalazal cytoplasm and some vacuoles of the degenerated synergid; two sperm nuclei within the cytoplasm of female cells; the cell wall of each cell of the embryo sac and that of the nucellar cells surrounding the embryo sac. No acid phosphatase was observed in the two-celled proembryo. Dense enzyme reaction product was localized in the chromatin of the free nuclei at early stage of the endosperm. The characteristic of acid phosphatase distribution during fertilization may be associated with the physiological change of the egg Cell, the reorganization of mitochondria in the egg cell cytoplasm, the degeneration of one of the two synergids, the physiological state of the sperm nuclei and the nuclear membrane fusion of the egg and sperm nuclei.  相似文献   

9.
小麦受精过程中酸性磷酸酶的超微细胞化学定位   总被引:6,自引:0,他引:6  
小麦(Triticum aestivum )受精前成熟胚囊,除胚囊中央细胞的合点端细胞质中有酸性磷酸酶外,其余部位均未发现酸性磷酸酶。受精时期,以下部位存在酸性磷酸酶活性:卵细胞的细胞核内一部分染色质和细胞质中大部分线粒体;精、卵核融合时两核的核周腔内;退化助细胞合点端细胞质和一些液泡内;进入雌性细胞中的两个精核;胚囊各成员细胞的细胞壁及胚囊周围珠心细胞的细胞壁。二细胞原胚中未见有酸性磷酸酶。早期胚乳游离核染色质上有酸性磷酸酶。小麦受精过程酸性磷酸酶的分布特点可能与卵细胞生理状态的变化和细胞质中线粒体的改组、助细胞的退化、精核的生理状态以及精核与卵核的核膜融合等有关。  相似文献   

10.
11.
Unfertilized eggs of the rose bitterling (Rhodeus ocellatus ocellatus) were squeezed out of females that had an elongated ovipositor and were dechorionated mechanically with fine forceps in physiological saline. The dechorionated eggs were transferred into fresh water then inseminated at once by spermatozoa of the same species. A large number of spermatozoa was found on the surface of eggs that had not yet had cortical reaction following insemination. The surface of the naked eggs responded by formation of many small cytoplasmic protrusions (viz., fertilization cones) at sperm attachment sites. The formed fertilization cones were rosettelike structures formed by the aggregation of some bleblike swellings devoid of microvilli and microplicae. About 10 min after insemination, the fertilization cones retracted, but marks of their presence characterized by less microvilli and microplicae remained in the eggs 15 min after insemination. Many spermatozoa penetrated into the cytoplasm of each naked egg. The sperm nuclear envelope disappeared by means of vesiculation resulting from fusion of the inner and outer membranes. The sperm nucleus decondensed and developed into a larger male pronucleus. Smooth-surfaced vesicles surrounded the decondensing sperm nucleus and formed the new male pronuclear envelope. Sperm mitochondria and flagella were found in the egg 15 min after insemination. The response of the egg surface to sperm entry and pronucleus formation are discussed.  相似文献   

12.
The union between a sperm and an egg nucleus in egg fertilization is necessary to mix genetic materials to create a new diploid genome for the next generation. In most animals, only one sperm is incorporated into the egg (monospermy), but several animals exhibit physiological polyspermy in which several sperms enter the egg during normal fertilization. However, only one sperm nucleus forms the zygote nucleus with the egg nucleus, even in a polyspermic egg. The cellular and molecular mechanisms involved in the selection of sperm nuclei in the egg cytoplasm have been well investigated in urodele amphibians. The principal sperm nucleus develops a larger sperm aster and contacts the egg nucleus to form a zygote nucleus, whereas other accessory sperm nuclei are unable to approach the egg nucleus. The diploid zygote nucleus induces cleavage and participates in embryonic development, whereas the accessory sperm nuclei undergo pyknosis and degenerate. We propose several models to account for the mechanisms of the selection of one sperm nucleus and the degeneration of accessory sperm nuclei. The roles of physiological polyspermy in animal reproduction are discussed by comparison with other polyspermic species.  相似文献   

13.
Sperm incorporation and the formation of the fertilization cone with its associated microvilli were investigated by scanning electron microscopy of eggs denuded of their vitelline layers with dithiothreitol or stripped of their elevating fertilization coats by physical methods. The activity of the elongating microvilli which appear to engulf the entering spermatozoon was recorded in living untreated eggs with time-lapse video microscopy. Following the acrosome reaction, the elongated acrosomal process connects the sperm head to the egg surface. About 15 microvilli adjacent to the attached sperm elongate at a rate of 2.6 μm/min and appear to engulf the sperm head, midpiece, and sperm tail. These elongate microvilli swell to form the fertilization cone (average height, 6.7 ± 2.0 μm) and are resorbed as the sperm tail enters the egg cytoplasm 10 min after insemination. Cytochalasin B, an inhibitor of microfilament motility, completely inhibits the observed egg plasma membrane surface activity in both control and denuded eggs. These results argue for a role of the microfilaments found in the egg cortex and microvilli as necessary for the engulfment of the sperm during incorporation and indicate that cytochalasin interferes with the fertilization process at this site.  相似文献   

14.
Guo F  Hu SY  Yuan Z  Zee SY  Han Y 《Protoplasma》2005,225(1-2):5-14
Summary. In this paper, the stages of normal sexual reproduction between pollen tube penetration of the archegonium and early embryo formation in Pinus tabulaeformis are described, emphasizing the transmission of parental cytoplasm, especially the DNA-containing organelles – plastids and mitochondria. The pollen tube growing in the nucellus contained an irregular tube nucleus followed by a pair of sperm cells. The tube cytoplasm contained abundant organelles, including starch-containing plastids and mitochondria. The two sperm cells differed in their volume of cytoplasm. The leading sperm, with more cytoplasm, contained abundant plastids and mitochondria, while the trailing one, with a thin layer of cytoplasm, had very few organelles. The mature egg cell contained a great number of mitochondria, whereas it lacked normal plastids. At fertilization, the pollen tube penetrated into the egg cell at the micropylar end and released all of its contents, including the two sperms. One of the sperm nuclei fused with the egg nucleus, whereas the other one was retained by the receptive vacuole. Very few plastids and mitochondria of male origin were observed around the fusing sperm and egg nuclei, while the retained sperm nucleus was surrounded by a large amount of male cytoplasm. The discharged tube cytoplasm occupied a large micropylar area in the egg cell. In the free nuclear proembryo, organelles of maternal and paternal origins intermingled in the neocytoplasm around the free nuclei. Most of the mitochondria had the same features as those of the egg cell, but some appeared to be from sperm cells and tube cytoplasm. Plastids were obviously of male origin, with an appearance similar to those of the sperm or tube cells. After cellularization of the proembryo, maternal mitochondria became more abundant than the paternal ones and the plastids enlarged and began to accumulate starch. The results reveal the cytological mechanism for paternal inheritance of plastids and biparental inheritance of mitochondria in Chinese pine. Correspondence and reprints: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing 100094, People’s Republic of China.  相似文献   

15.
Morphological studies on the gametes and entry of the spermatozoan into the egg of the zebra danio, Brachydanio rerio, were conducted primarily with scanning electron microscopy. The spermatozoan showed a spherical head, which lacked an acrosome, a midpiece containing several mitochondria, and a flagellum. Observations of the unfertilized egg confirmed and extended prior studies showing a distinct cluster of microvilli on the plasma membrane, identified as the sperm entry site, beneath the inner micropylar aperture (Hart and Donovan, '83). The fertilizing spermatozoan attached to the sperm entry site within 5 seconds of the mixing of a gamete suspension. Binding to the egg microvilli appeared restricted to the equatorial surface of the spermatozoan. Fusion between the plasma membranes of the interacting gametes was followed by the formation of a distinct, nipple-shaped fertilization cone. The sperm head was partially incorporated into the fertilization cone cytoplasm by 60 seconds postinsemination. The incorporation of the entire sperm head, midpiece, and a portion of the flagellum occurred between 1 and 2 minutes. During this time, the fertilization cone shortened and was transformed into a massive, blister-like cytoplasmic swelling. Concurrently, upward movements of the ooplasm resulted in the gradual disappearance of the original depression in the egg surface containing the sperm entry site. The second polar body, fully developed by 10 minutes postinsemination, formed approximately 10-15 microns from the site of sperm penetration. Development of the fertilization cone, formation of the second polar body and exocytosis of cortical granules at the sperm entry site readily occurred in parthenogenetically activated eggs, indicating that these surface rearrangements do not require sperm binding and/or fusion.  相似文献   

16.
This study described the fertilization process of the jellyfish Cladonema uchidai by means of transmission electron microscopy. Female pronucleus was situated in close vicinity to the animal pole of the spawned egg, where the surface of the egg was flat or slightly depressed. Microvilli were observed except on the surface at the animal pole. The egg was entirely covered with a coat composed of fibrous materials. The spermatozoon was of the primitive type, and the proacrosomal vesicles were found immediately beneath the plasma membrane of the antero-lateral region of the sperm head. Within 15 sec after insemination, spermatozoa were incorporated in the egg cytoplasm only at the microvilli-free surface at the animal pole. Neither opening of the proacosomal vesicles nor formation of the acrosomal process was observed. No appreciable changes of cortical cytoplasm could be detected, although the egg became sticky after fertilization. Decondensation of the incorporated sperm nucleus occurred without breakdown of the original nuclear envelope. Within 10 min after insemination, the sperm nucleus still under the process of its decondensation fused with the female pronucleus. These findings were discussed in comparison with the fertilization process of higher metazoans as well as of other cnidarians.  相似文献   

17.
In an earlier report the ultrastructure and nucleoid organelles of male gamete in Pinus tabulaeformis Carr. have been described. Presently, the ultrastructure of the cytoplasm of the egg cell and pollen tube—immediately before fertilization and during cytoplasmic transmission of male gametophyte—has been described for the same species. The fate of parental plastids and mitochondria in the proembryo has also been followed. The mature egg cell contains a large amount of mitochondria, but seems to lack normal plastids. Most plastids have transformed into large inclusions. Apart from the large inclusions, there are abundant small inclusions and other organelles in the egg cell. During fertilization, pollen tube penetrates into the egg cell at the micropylar end and thereafter the contents are released. Plastid and mitochondrion of male origin are lacking near the fusing sperm-egg nuclei. The second sperm nucleus—not involved in karyogamy—remains at a site near the receptive vacuole. This nucleus is surrounded by large amount of male cytoplasm containing mixed organelles from the sperm cell, tube cell, and egg cell. At the free nuclear proembryo stage, organelles of male and female origin are visible in the perinucleus-cytoplasmic zone. Most of the mitochondria have the same morphological features as those in the egg cell. Some of the mitochondria appear to have originated from the sperm and tube cells. Plastids are most likely of male gametophyte origin because they have similar appearance as those of the sperm and tube cell. Large inclusions in the egg cell become vacuole-like. Paternal plastids have been incorporated into the neocytoplasm of the proembryo. In the cellular proembryo, maternal mitochondria are more abundant. Plastids resembling those of the sperm and tube cell are still present. These cytological results clearly show that in P. tabulaeformis , plastids are inherited paternally and mitochondria bipaternally. The cytological mechanism of plastid and mitochondrion inheritance in gymnosperm is discussed.  相似文献   

18.
Embryos of Arbacia punctulata , treated to remove the fertilization membrane and hyaline layer, were mixed with sperm (reinseminated) at 20–30 min (streak stage) and at 70 min (2-cell stage) postinsemination. Sperm, incorporated into embryos reinseminated at the streak stage, metamorphosed into male pronuclei which subsequently migrated to and fused with the zygote nucleus. Although blastomeres were capable of incorporating sperm and forming fertilization cones, less than 10% of the 2-cell stage embryos reinseminated. Sperm, were found entrapped within an amorphous material along the surface of 2-cell stage embryos; many had failed to undergo an acrosome reaction. These results indicate that conditions necessary for incorporation and metamorphosis of sperm nuclei into male pronuclei are present in the embryo after the normal period of fertilization.  相似文献   

19.
Motile sperm cells of land plants are released directly into the environment and encounter numerous constraints on their way to the egg. Sperm cell organization, shape, size, and plasticity are crucial to the processes associated with fertilization. We conducted an ultrastructural investigation to detail insemination (sperm release, swimming and movement within the archegonium) and fertilization in the model fern Ceratopteris richardii. Gametophytes were grown from spores using sterile culture techniques and flooded in water when sexually mature. Materials were examined at different stages post-flooding. During insemination in C. richardii, the sperm cytoskeleton and flagella rearrange, and the coils of the cell extend while entering the neck canal. In this nearly linear configuration, the dense ridge, a densely compacted band of filaments presumed to be actin, expands to surround the leading edge of the sperm cell. This ridge fuses with the receptive site on the female gamete and is the sperm component that initiates contact with the egg nuclear envelope. All cellular components, except plastids, enter the egg cytoplasm. Sperm mitochondria are distinguishable from those of the egg because they are encased by two or three additional membranes and are sequestered from the zygote cytoplasm. During karyogamy, the sperm components, including the microtubule cytoskeleton (spline) and flagella, maintain their spatial integrity. Microtubules play key roles not only in sperm cell structure but also in facilitating karyogamy in this fern. After karyogamy is completed, microtubule arrays of the sperm cell and the components of the locomotory apparatus are disassembled. We provide the first demonstration of the likely involvement of sperm actin in egg penetration in land plants and new insights into the fate of paternal organelles. This study points to the roles sperm cell structure and dynamics play in the intricate processes of insemination and fertilization in land plants.  相似文献   

20.
Serially sectioned embryo sacs of Nicotiana tabacum were examined during fertilization events using transmission electron microscopy. After pollen tube discharge, the outer membrane of the sperm pair is removed, the two sperm cells are deposited in the degenerate synergid and the sperm cells migrate to the chalazal edge of the synergid where gametic fusion occurs. During fertilization, the male cytoplasm, including heritable organelles, is transmitted into the female reproductive cells as shown by: (1) the cytoplasmic confluence of one sperm and the central cell during cellular fusion, (2) the occurrence of sperm mitochondria (distinguished by ultrastructural differences) in the zygote cytoplasm and adjacent to the sperm nucleus, (3) the presence of darkly stained aggregates which are found exclusively in mature sperm cells within the cytoplasm of both female cells soon after cell fusion, and (4) the absence of any large enucleated cytoplasmic bodies containing recognizable organelles outside the zygote or endosperm cells. The infrequent occurrence of plastids in the sperm and the transmission of sperm cytoplasm into the egg during double fertilization provide the cytological basis for occasional biparental plastid inheritance as reported previously in tobacco. Although sperm mitochondria are transmitted into the egg/zygote, their inheritance has not been detected genetically. In one abnormal embryo sac, a pair of sperm cells was released into the cytoplasm of the presumptive zygote. Although pollen tube discharge usually removes the inner pollen-tube plasma membrane containing the two sperm cells, this did not occur in this case. When sperm cells are deposited in a degenerating synergid or outside of a cell, this outer membrane is removed, as it apparently is for fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号