首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cetirizine, terfenadine, loratadine, astemizole and mizolastine were compared for their ability to inhibit marker activities for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and for some glucuronidation isoenzymes in human liver microsomes. The most pronounced effects were observed with terfenadine, astemizole and loratadine which inhibited CYP3A4-mediated testosterone 6beta-hydroxylation (IC50 of 23, 21 and 32 microM, respectively) and CYP2D6-mediated dextromethorphan O-demethylation (IC50 of 18, 36 and 15 microM, respectively). In addition, loratadine markedly inhibited the CYP2C19 marker activity, (S)-mephenytoin 4-hydroxylation (Ki of 0.17 microM). Furthermore, loratadine activated the CYP2C9-catalyzed tolbutamide hydroxylation (ca. 3-fold increase at 30 microM) and inhibited some glucuronidation enzymes. Mizolastine appeared to be a relatively weak and unspecific inhibitor of CYP2E1, CYP2C9, CYP2D6 and CYP3A4 (IC50Ss in the 100 micromolar range). Cetirizine demonstrated no effect on the investigated activities. A comparison of the inhibitory potencies of cetirizine, terfenadine, loratidine, astemizole and mizolastine with their corresponding plasma concentrations in humans suggests that these antihistamines are not likely to interfere with the metabolic clearance of coadministered drugs, with the exception of loratidine, which appears to inhibit CYP2C19 with sufficient potency to warrant additional investigation.  相似文献   

2.
p-Nitrophenol hydroxylation is widely used as a probe for microsomal CYP2E1. Several drugs are known as CYP2E1 inhibitors because of their capability to inhibit p-nitrophenol hydroxylation. Our results suggest further participation of CYP2A6 and CYP2C19 enzymes in p-nitrophenol hydroxylation. Moreover, CYP2A6 and CYP2C19 may be considered as the primary catalysts, whereas CYP2E1 can also contribute to the hydroxylation of p-nitrophenol. Further aim of our study was to evaluate the selectivity of p-nitrophenol hydroxylase inhibitors towards cytochrome P450 enzymes. The effects of antifungals: bifonazole, econazole, clotrimazole, ketoconazole, miconazole; CNS-active drugs: chlorpromazine, desipramine, fluphenazine, thioridazine; and the non-steroidal anti-inflammatory drug: diclofenac were investigated on the enzyme activities selective for CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. None of the drugs could be considered as a potent inhibitor of CYP2E1. Strong inhibition was observed for CYP3A4 by antifungals with IC(50) values in submicromolar range. However, ketoconazole was the only imidazole derivative that could be considered as a selective inhibitor of CYP3A4. The CNS-active drugs investigated were found to be weak inhibitors of CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. Diclofenac efficiently inhibited CYP2C9 and to a less extent CYP3A4 enzyme.  相似文献   

3.
Or PM  Lam FF  Kwan YW  Cho CH  Lau CP  Yu H  Lin G  Lau CB  Fung KP  Leung PC  Yeung JH 《Phytomedicine》2012,19(6):535-544
The present study investigated the effects of Radix Astragali (RA) and Radix Rehmanniae (RR), the major components of an anti-diabetic foot ulcer herbal formula (NF3), on the metabolism of model probe substrates of human CYP isoforms, CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, which are important in the metabolism of a variety of xenobiotics. The effects of RA or RR on human CYP1A2 (phenacetin O-deethylase), CYP2C9 (tolbutamide 4-hydroxylase), CYP2D6 (dextromethorphan O-demethylase), CYP2E1 (chlorzoxazone 6-hydroxylase) and CYP3A4 (testosterone 6β-hydroxylase) activities were investigated using pooled human liver microsomes. NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.98mg/ml) and CYP3A4 (IC(50)=0.76mg/ml), with K(i) of 0.67 and 1.0mg/ml, respectively. With specific human CYP2C9 and CYP3A4 isoforms, NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.86mg/ml) and CYP3A4 (IC(50)=0.88mg/ml), with K(i) of 0.57 and 1.6mg/ml, respectively. Studies on RA or RR individually showed that RR was more important in the metabolic interaction with the model CYP probe substrates. RR dose-dependently inhibited the testosterone 6β-hydroxylation (K(i)=0.33mg/ml) while RA showed only minimal metabolic interaction potential with the model CYP probe substrates studied. This study showed that RR and the NF3 formula are metabolized mainly by CYP2C9 and/or CYP3A4, but weakly by CYP1A2, CYP2D6 and CYP2E1. The relatively high K(i) values of NF3 (for CYP2C9 and CYP3A4 metabolism) and RR (for CYP3A4 metabolism) would suggest a low potential for NF3 to cause herb-drug interaction involving these CYP isoforms.  相似文献   

4.
R Feng  X Zhou  PM Or  JY Ma  XS Tan  J Fu  C Ma  JG Shi  CT Che  Y Wang  JH Yeung 《Phytomedicine》2012,19(12):1125-1133
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC(50)=1.06μM) and CYP2C9 (IC(50)=3.89μM), minimal inhibition on CYP3A4 (IC(20)=11.94μM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12μM, 2.00μM and 95.03μM, respectively. HM-1 competitively inhibited testosterone 6β-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.  相似文献   

5.
Yeung JH  Or PM 《Phytomedicine》2012,19(5):457-463
Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy or health supplement in China. Previous studies have shown that PSP decreased antipyrine clearance and inhibited rat CYP2C11-mediated tolbutamide 4-hydroxylation and in human CYP2C9. In this study, the effects of the water extractable fraction of PSP on the metabolism of model CYP1A2, CYP2D6, CYP2E1 and CYP3A4 probe substrates were investigated in pooled human liver microsomes. PSP (1.25-20μM) dose-dependently decreased CYP1A2-mediated metabolism of phenacetin to paracetamol (IC(50) 19.7μM) and CYP3A4-mediated metabolism of testosterone to 6β-hydroxytestosterone (IC(20) 7.06μM). Enzyme kinetics studies showed the inhibition of CYP1A2 activity was competitive and concentration-dependent (K(i)=18.4μM). Inhibition of testosterone to 6β-hydroxytestosterone was also competitive and concentration-dependent (K(i)=31.8μM). Metabolism of dextromethorphan to dextrorphan (CYP2D6-mediated) and chlorzoxazone to 6-hydroxychlorzoxazone (CYP2E1-mediated) was only minimally inhibited by PSP, with IC(20) values at 15.6μM and 11.9μM, respectively. This study demonstrated that PSP competitively inhibited the CYP1A2- and CYP3A4-mediated metabolism of model probe substrates in human liver microsomes in vitro. The relatively high K(i) values for CYP1A2 and CYP3A4 would suggest a low potential for PSP to cause herb-drug interaction related to these CYP isoforms.  相似文献   

6.
Chamomile extracts and tea are widely used herbal preparations for the treatment of minor illnesses (e.g. indigestion, inflammation). In this study the inhibitory effect of chamomile essential oil and its major constituents on four selected human cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2D6 and CYP3A4) was investigated. Increasing concentrations of the test compounds were incubated with individual, recombinant CYP isoforms and their effect on the conversion of surrogate substances was measured fluorometrically in 96-well plates; enzyme inhibition was expressed as IC50 and Ki value in relation to positive controls. Crude essential oil demonstrated inhibition of each of the enzymes, with CYP1A2 being more sensitive than the other isoforms. Three constituents of the oil, namely chamazulene (IC50 = 4.41 microM), cis-spiroether (IC50 = 2.01 microM) and trans-spiroether (IC50 = 0.47 microM) showed to be potent inhibitors of this enzyme, also being active towards CYP3A4. CYP2C9 and CYP2D6 were less inhibited, only chamazulene (IC50 = 1.06 microM) and alpha-bisabolol (IC50 = 2.18 microM) revealed a significant inhibition of the latter. As indicated by these in vitro data, chamomile preparations contain constituents inhibiting the activities of major human drug metabolizing enzymes; interactions with drugs whose route of elimination is mainly via cytochromes (especially CYP1A2) are therefore possible.  相似文献   

7.
Yao HT  Chang YW  Lan SJ  Chen CT  Hsu JT  Yeh TK 《Life sciences》2006,79(26):2432-2440
The inhibitory effect of saturated fatty acids (SFAs): palmitic acid (PA), stearic acid (SA) and polyunsaturated fatty acids (PUFAs): linoleic acid (LA), linolenic acid (LN), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on six human drug-metabolizing enzymes (CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4) was studied. Supersomes from baculovirus-expressing single isoforms were used as the enzyme source. Phenacetin O-deethylation (CYP1A2), diclofenac 4-hydroxylation (CYP2C9), mephenytoin 4-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1) and midazolam 1-hydroxylation (CYP3A4) were used as the probes. Results show that all the five examined PUFAs competitively inhibited CYP2C9- and CYP2C19-catalyzed metabolic reactions, with Ki values ranging from 1.7 to 4.7 microM and 2.3 to 7.4 microM, respectively. Among these, AA, EPA and DHA tended to have greater inhibitory potencies (lower IC(50) and Ki values) than LA and LN. In addition, these five PUFAs also competitively inhibited the metabolic reactions catalyzed by CYP1A2, 2E1 and 3A4 to a lesser extent (Ki values>10 microM). On the other hand, palmitic and stearic acids, the saturated fatty acids, had no inhibitory effect on the activities of six human CYP isozymes at concentrations up to 200 microM. Incubation of PUFAs with CYP2C9 or CYP2C19 in the presence of NADPH resulted in the decrease of PUFA concentrations in the incubation mixtures. These results indicate that the PUFAs are potent inhibitors as well as the substrates of CYP2C9 and CYP2C19.  相似文献   

8.
CI-1034, an endothelin-A receptor antagonist was being developed for pulmonary hypertension. Drug-drug interaction studies using human hepatic microsomes were conducted to assess CYP1A2, CYP2C9, CYP2C19, CYP3A4 and CYP2D6 inhibition potential; CYP3A4 induction potential was evaluated using primary human hepatocytes. CI-1034 moderately inhibited CYP2C9 (IC(50) 39.6 microM) and CYP3A4 activity (IC(50) 21.6 microM); CYP3A4 inhibition was metabolism-dependent. In human hepatocytes, no increase in CYP3A4 activity was observed in vitro, while mRNA was induced 15-fold, similar to rifampin, indicating that CI-1034 is both an inhibitor and inducer of CYP3A4. A 2-week clinical study was conducted to assess pharmacokinetics, pharmacodynamics and safety. No significant changes were observed in [formula: see text] between days 1 and 14. However, reversible elevations of serum liver enzymes were observed with a 50mg BID dose and the program was terminated. To further understand the interactions of CI-1034 in the liver and possible mechanisms of the observed hepatotoxicity, we evaluated the effect of CI-1034 on bile acid transport and previously reported that CI-1034 inhibited biliary efflux of taurocholate by 60%, in vitro. This indicated that inhibition of major hepatic transporters could be involved in the observed hepatotoxicity. We next evaluated the in vitro inhibition potential of CI-1034 with the major hepatic transporters OATP1B1, OATP1B3, OATP2B1, MDR1, MRP2 and OCT. CI-1034 inhibited OATP1B1 (K(i) 2 microM), OATP1B3 (K(i) 1.8 microM) and OATP2B1 activity (K(i) 3.3 microM) but not OCT, MDR1 or MRP2 mediated transport. Our data indicates that CI-1034 is an inhibitor of major hepatic transporters and inhibition of bile efflux may have contributed to the observed clinical hepatotoxicity. We recommend that in vitro drug-drug interaction panels include inhibition and induction studies with transporters and drug metabolizing enzymes, to more completely assess potential in vivo interactions or toxicity.  相似文献   

9.
The inhibitory effects of a series of sulfaphenazole (SPA) derivatives were studied on two modified forms of rabbit liver cytochrome P450 2C5 (CYP2C5), CYP2C5dH, and structurally characterized CYP2C5/3LVdH and compared to the previously described effects of these compounds on human CYP2C8, 2C9, 2C18, and 2C19. SPA and other negatively charged compounds that potently inhibit CYP2C9 had very little effect on CYP2C5dH, whereas neutral, N-alkylated derivatives exhibited IC50 values between 8 and 22 microM. One of the studied compounds, 4, that derives from SPA by replacement of its NH(2) substituent with a methyl group and by N-methylation of its sulfonamide moiety, acted as a good substrate for all CYP2Cs used in this study. Hydroxylation of the benzylic methyl of 4 is the major reaction catalyzed by all of these CYP2C proteins, whereas hydroxylation of the N-phenyl group of 4 was observed as a minor reaction. CYP2C5dH, 2C5/3LVdH, 2C9, 2C18, and 2C19 are efficient catalysts for the benzylic hydroxylation of 4, with K(m) values between 5 and 13 microM and k(cat) values between 16 and 90 min(-1). The regioselectivity observed for oxidation of 4 by CYP2C5/3LVdH was easily interpreted on the basis of the existence of two different binding modes of 4 characterized in the experimentally determined structure of the complexes of CYP2C5/3LVdH with 4 described in the following paper [Wester, M. R. et al. (2003) Biochemistry 42, 6370-6379].  相似文献   

10.
The inhibition by azole antifungals of human cytochrome CYP3A4, the major form of drug metabolising enzyme within the liver, was compared with their inhibitory activity against their target enzyme, Candida albicans sterol 14alpha-demethylase (CYP51), following heterologous expression in Saccharomyces cerevisiae. IC(50) values for ketoconazole and itraconazole CYP3A4 inhibition were 0.25 and 0. 2 microM. These values compared with much lower doses required for the complete inhibition of C. albicans CYP51, where IC(50) values of 0.008 and 0.0076 microM were observed for ketoconazole and itraconazole, respectively. Additionally, stereoselective inhibition of CYP3A4 and CYP51 was observed with enantiomers of the azole antifungal compounds diclobutrazol and SCH39304. In both instances, the RR(+) configuration at their asymmetric carbon centres was most active. Interestingly, the SS(-) enantiomeric form of SCH39304 was inactive and failed to bind CYP3A4, as demonstrable by Type II binding spectra.  相似文献   

11.
To establish a prediction system for drug-induced gynecomastia in clinical fields, a model reaction system was developed to explain numerically this side effect. The principle is based on the assumption that 50% inhibition concentration (IC(50)) of drugs on the in vitro metabolism of estradiol (E2) to its major product 2-hydroxyestradiol (2-OH-E2) can be regarded as the index for achieving this purpose. By using human cytochrome P450s coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli as the enzyme, the reaction was examined. Among the nine enzymes (CYP1A1, 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) tested, CYP3A4 having a V(max)/K(m) (ml/min/nmol P450) value of 0.32 for production of 2-OH-E2 was shown to be the most suitable enzyme as the reagent. The inhibitory effects of ketoconazole, cyclosporin A, and cimetidine toward the 2-hydroxylation of E2 catalyzed by CYP3A4 were obtained, and their IC(50) values were 7 nM, 64 nM, and 290 microM, respectively. The present results suggest that IC(50) values thus obtained can be substituted as the prediction index for gynecomastia induced by drugs, considering the patients' individual information.  相似文献   

12.
The synthesis and potent inhibitory activity of novel 4-[(imidazol-1-yl and triazol-1-yl)(phenyl)methyl]aryl-and heteroaryl amines versus a MCF-7 CYP26A1 cell assay is described. Biaryl imidazole ([4-(imidazol-1-yl-phenyl-methyl)-phenyl]-naphthalen-2-yl-amine (8), IC(50)=0.5 microM; [4-(imidazol-1-yl-phenyl-methyl)-phenyl]-indan-5-yl-amine (9), IC(50)=1.0 microM) and heteroaryl imidazole derivatives ((1H-benzoimidazol-2-yl)-{4-[(5H-imidazol-1-yl)-phenyl-methyl]-phenyl}-amine (15), IC(50)=2.5 microM; benzooxazol-2-yl-{4-[(5H-imidazol-1-yl)-phenyl-methyl]-phenyl}-amine (16), IC(50)=0.9 microM; benzothiazol-2-yl-{4-[(5H-imidazol-1-yl)-phenyl-methyl]-phenyl}-amine (17), IC(50)=1.5 microM) were the most potent CYP26 inhibitors. Using a CYP26A1 homology model differences in activity were investigated. Incubation of SH-SY5Y human neuroblastoma cells with the imidazole aryl derivative 8, and the imidazole heteroaryl derivatives 16 and 17 potentiated the atRA-induced expression of CYP26B1. These data suggest that further structure-function studies leading to clinical development are warranted.  相似文献   

13.
Metabolic transformations of two substrates for human cytochrome P450 (CYP450) 2C9, tolbutamide and diclofenac, were investigated in hepatic microsomes from Atlantic salmon (Salmo salar L.). Tolbutamide hydroxylation followed Michaelis–Menten kinetics. Mean apparent Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax) values for 4-hydroxytolbutamide (TBOH) formation were 0.09 ± 0.031 mM and 49.5 ± 6.03 pmol/min/mg, respectively. Addition of sulfaphenazole, an inhibitor for mammalian CYP2C9, in a range from 1 to 200 μM decreased formation of TBOH in a concentration-dependent manner, but not to 50%. Neither fluconazole, an inhibitor of human CYP2C9, nor ketoconazole, inhibitor of CYP1A and CYP3A in fish, affected TBOH formation. In contrast ellipticine, an inhibitor of CYP1A in fish inhibited TBOH formation with the IC50 value of 12.1 μM. The rate of TBOH formation was competitively inhibited by 100 μM of sesamin in the incubations, but the degree of inhibition did not increase with increased sesamin concentration. Ethoxyresorufin hydroxylase (EROD) activity was inhibited by tolbutamide in a non-competitive manner (inhibition constant Ki = 218 μM). Our data suggest that tolbutamide is metabolized by salmon microsomes with formation of TBOH. CYP1A might be involved in this reaction as suggested by decreased TBOH formation in the presence of ellipticine and decreased EROD activity in the presence of tolbutamide. Incubation of diclofenac with the microsomes yielded no metabolite formation, suggesting that salmon does not possess diclofenac-metabolizing activity.  相似文献   

14.
Beauvericin is a secondary metabolite natural product from microorganisms and has been shown to have a new potential antifungal activity. In this study, the metabolism and inhibition of beauvericin in human liver microsomes (HLM) and rat liver microsomes (RLM) were investigated. The apparent K(m) and V(max) of beauvericin in HLM were determined by substrate depletion approach and its inhibitory effects on cytochromes P450 (CYP) activities were evaluated using probe substrates, with IC(50) and the (K(i)) values were 1.2 microM (0.5 microM) and 1.3 microM (1.9 microM), respectively for CYP3A4/5 (midazolam) and CYP2C19 (mephenytoin). Similarly, beauvericin was also a potent inhibitor for CYP3A1/2 (IC(50): 1.3 microM) in RLM. Furthermore, the pharmacokinetics of beauvericin in the rat were studied after p.o administration alone and co-administration with ketoconazole, which indicated a pharmacodynamic function may play a role in the synergistic effect on antifungal activity.  相似文献   

15.
A series of six site-directed mutants of CYP 2C9 were constructed with the aim to better define the amino acid residues that play a critical role in substrate selectivity of CYP 2C9, particularly in three distinctive properties of this enzyme: (i) its selective mechanism-based inactivation by tienilic acid (TA), (ii) its high affinity and hydroxylation regioselectivity toward diclofenac, and (iii) its high affinity for the competitive inhibitor sulfaphenazole (SPA). The S365A mutant exhibited kinetic characteristics for the 5-hydroxylation of TA very similar to those of CYP 2C9; however, this mutant did not undergo any detectable mechanism-based inactivation by TA, which indicates that the OH group of Ser 365 could be the nucleophile forming a covalent bond with an electrophilic metabolite of TA in TA-dependent inactivation of CYP 2C9. The F114I mutant was inactive toward the hydroxylation of diclofenac; moreover, detailed analyses of its interaction with a series of SPA derivatives by difference visible spectroscopy showed that the high affinity of SPA to CYP 2C9 (K(s)=0.4 microM) was completely lost when the phenyl substituent of Phe 114 was replaced with the alkyl group of Ile (K(s)=190+/-20 microM), or when the phenyl substituent of SPA was replaced with a cyclohexyl group (K(s)=120+/-30 microM). However, this cyclohexyl derivative of SPA interacted well with the F114I mutant (K(s)=1.6+/-0.5 microM). At the opposite end, the F94L and F110I mutants showed properties very similar to those of CYP 2C9 toward TA and diclofenac. Finally, the F476I mutant exhibited at least three main differences compared to CYP 2C9: (i) big changes in the k(cat) and K(m) values for TA and diclofenac hydroxylation, (ii) a 37-fold increase of the K(i) value found for the inhibition of CYP 2C9 by SPA, and (iii) a great change in the regioselectivity of diclofenac hydroxylation, the 5-hydroxylation of this substrate by CYP 2C9 F476I exhibiting a k(cat) of 28min(-1). These data indicate that Phe 114 plays an important role in recognition of aromatic substrates of CYP 2C9, presumably via Pi-stacking interactions. They also provide the first experimental evidence showing that Phe 476 plays a crucial role in substrate recognition and hydroxylation by CYP 2C9.  相似文献   

16.
We examined which human CYP450 forms contribute to carbon tetrachloride (CCl(4)) bioactivation using hepatic microsomes, heterologously expressed enzymes, inhibitory antibodies and selective chemical inhibitors. CCl(4) metabolism was determined by measuring chloroform formation under anaerobic conditions. Pooled human microsomes metabolized CCl(4) with a K(m) of 57 microM and a V(max) of 2.3 nmol CHCl(3)/min/mg protein. Expressed CYP2E1 metabolized CCl(4) with a K(m) of 1.9 microM and a V(max) of 8.9 nmol CHCl(3)/min/nmol CYP2E1. At 17 microM CCl(4), a monoclonal CYP2E1 antibody inhibited 64, 74 and 83% of the total CCl(4) metabolism in three separate human microsomal samples, indicating that at low CCl(4) concentrations, CYP2E1 was the primary enzyme responsible for CCl(4) metabolism. At 530 microM CCl(4), anti-CYP2E1 inhibited 36, 51 and 75% of the total CCl(4) metabolism, suggesting that other CYP450s may have a significant role in CCl(4) metabolism at this concentration. Tests with expressed CYP2B6 and inhibitory CYP2B6 antibodies suggested that this form did not contribute significantly to CCl(4) metabolism. Effects of the CYP450 inhibitors alpha-naphthoflavone (CYP1A), sulfaphenazole (CYP2C9) and clotrimazole (CYP3A) were examined in the liver microsome sample that was inhibited only 36% by anti-CYP2E1 at 530 microM CCl(4). Clotrimazole inhibited CCl(4) metabolism by 23% but the other chemical inhibitors were without significant effect. Overall, these data suggest that CYP2E1 is the major human enzyme responsible for CCl(4) bioactivation at lower, environmentally relevant levels. At higher CCl(4) levels, CYP3A and possibly other CYP450 forms may contribute to CCl(4) metabolism.  相似文献   

17.
Zou L  Harkey MR  Henderson GL 《Life sciences》2002,71(13):1579-1589
We evaluated the effects of 25 purified components of commonly used herbal products on the catalytic activity of cDNA-expressed cytochrome P450 isoforms in in vitro experiments. Increasing concentrations of the compounds were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit metabolism of surrogate substrates by 50%) was estimated and compared with IC50's for the positive control inhibitory drugs furafylline, sulfaphenazole, tranylcypromine, quinidine, and ketoconazole. Constituents of Ginkgo biloba (ginkgolic acids I and II), kava (desmethoxyyangonin, dihydromethysticin, and methysticin), garlic (allicin), evening primrose oil (cis-linoleic acid), and St. John's wort (hyperforin and quercetin) significantly inhibited one or more of the cDNA human P450 isoforms at concentrations of less than 10 uM. Some of the test compounds (components of Ginkgo biloba, kava, and St. John's wort) were more potent inhibitors of the isoforms 1A2, 2C19, and 2C19 than the positive controls used in each assay (furafylline, sulfaphenazole, and tranylcypromine, respectively), which are known to produce clinically significant drug interactions. The enzyme most sensitive to the inhibitory of effects of these compounds was CYP2C19, while the isoform least effected was CYP2D6. These data suggest that herbal products containing evening primrose oil, Ginkgo biloba, kava, and St. John's Wort could potentially inhibit the metabolism of co-administered medications whose primary route of elimination is via cytochrome P450.  相似文献   

18.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

19.
We have recently reported the discovery of orally active sulfonylalkylamide Factor Xa (FXa) inhibitors, as typified by compound 1 (FXa IC(50)=0.061 microM). Since the pyridylpiperidine moiety was not investigated in our previous study, we conducted detailed structure-activity relationship studies on this S4 binding element. This investigation led to the discovery of piperazinylimidazo[1,2-a]pyridine 2b as a novel and potent FXa inhibitor (FXa IC(50)=0.021 microM). Further modification resulted in the discovery of 2-hydroxymethylimidazo[1,2-a]pyridine 2e (FXa IC(50)=0.0090 microM), which was found to be a selective and orally bioavailable FXa inhibitor with reduced CYP3A4 inhibition.  相似文献   

20.
Troglitazone (TGZ) is an orally active antihyperglycemic agent used in the treatment of noninsulin-dependent diabetes mellitus. Several cases of liver failure following TGZ administration led to its withdrawal from the market. The mechanism of toxicity is still not understood. The formation of toxic metabolites is believed to play an important role. Herein, we report the biotransformation of TGZ in human hepatocytes. TGZ at 50 microM concentration was incubated with cryopreserved human hepatocytes. Four metabolites were found-glucuronide, sulfate, and two glutathione (GSH) conjugates of TGZ. The two GSH metabolites could be conjugation at the 6-hydroxychromane nucleus and the thiazolidinedione ring. Alternatively, the conjugation could be one of the two rings, with the two GSH metabolites are diastereomers. The sulfate conjugate was the major metabolite found. The cytochrome P450 (CYP) inhibitors furafylline (CYP1A1/2), omeprazole (CYP2C19), ketoconazole (CYP3A4), and sulfaphenazole (CYP2C9) had no inhibitory effect on the TGZ metabolism suggesting that several P450s may play a role in the TGZ metabolic pathway. Previous studies in our laboratory have shown a large interindividual variation between different donors in cytotoxicity after dosing with TGZ. Based on EC(50) values, donors were classified as sensitive or resistant. The sensitive human donors were found to form significantly less troglitazone GSH conjugates and glucuronides than the resistant donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号