首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Primary progressive aphasia (PPA) is a neurodegenerative syndrome characterized by an insidious onset and gradual progression of deficits that can involve any aspect of language, including word finding, object naming, fluency, syntax, phonology and word comprehension. The initial symptoms occur in the absence of major deficits in other cognitive domains, including episodic memory, visuospatial abilities and visuoconstruction. According to recent diagnostic guidelines, PPA is typically divided into three variants: nonfluent variant PPA (also termed progressive nonfluent aphasia), semantic variant PPA (also termed semantic dementia) and logopenic/phonological variant PPA (also termed logopenic progressive aphasia). The paper describes a 79-yr old man, who presented with normal motor speech and production rate, impaired single word retrieval and phonemic errors in spontaneous speech and confrontational naming. Confrontation naming was strongly affected by lexical frequency. He was impaired on repetition of sentences and phrases. Reading was intact for regularly spelled words but not for irregular words (surface dyslexia). Comprehension was spared at the single word level, but impaired for complex sentences. He performed within the normal range on the Dutch equivalent of the Pyramids and Palm Trees (PPT) Pictures Test, indicating that semantic processing was preserved. There was, however, a slight deficiency on the PPT Words Test, which appeals to semantic knowledge of verbal associations. His core deficit was interpreted as an inability to retrieve stored lexical-phonological information for spoken word production in spontaneous speech, confrontation naming, repetition and reading aloud.  相似文献   

2.

Objectives

Recent repetitive TMS (rTMS) mapping protocols for language mapping revealed deficits of this method, mainly in posterior brain regions. Therefore this study analyzed the impact of different language tasks on the localization of language-positive brain regions and compared their effectiveness, especially with regard to posterior brain regions.

Methods

Nineteen healthy, right-handed subjects performed object naming, pseudoword reading, verb generation, and action naming during rTMS language mapping of the left hemisphere. Synchronically, 5 Hz/10 pulses were applied with a 0 ms delay

Results

The object naming task evoked the highest error rate (14%), followed by verb generation (13%) and action naming (11%). The latter revealed more errors in posterior than in anterior areas. Pseudoword reading barely generated errors, except for phonological paraphasias.

Conclusions

In general, among the evaluated language tasks, object naming is the most discriminative task to detect language-positive regions via rTMS. However, other tasks might be used for more specific questions.  相似文献   

3.

Purpose

The purpose of the present study was to extend previous research by analyzing the ability of adults who stutter to use phonological working memory in conjunction with lexical access to perform a word jumble task.

Method

Forty English words consisting of 3-, 4-, 5-, and 6-letters (n = 10 per letter length category) were randomly jumbled using a web-based application. During the experimental task, 26 participants were asked to silently manipulate the scrambled letters to form a real word. Each vocal response was coded for accuracy and speech reaction time (SRT).

Results

Adults who stutter attempted to solve fewer word jumble stimuli than adults who do not stutter at the 4-letter, 5-letter, and 6-letter lengths. Additionally, adults who stutter were significantly less accurate solving word jumble tasks at the 4-letter, 5-letter, and 6-letter lengths compared to adults who do not stutter. At the longest word length (6-letter), SRT was significantly slower for the adults who stutter than the fluent controls.

Conclusion

Results of the current study lend further support to the notion that differences in various aspects of phonological processing, including vision-to-sound conversions, sub-vocal stimulus manipulation, and/or lexical access are compromised in adults who stutter.  相似文献   

4.

Objectives

To assess and compare cortical thickness (CTh) of patients with prodromal Dementia with Lewy bodies (pro-DLB), prodromal Alzheimer''s disease (pro-AD), DLB dementia (DLB-d), AD dementia (AD-d) and normal ageing.

Methods

Study participants(28 pro-DLB, 27 pro-AD, 31 DLB-d, 54 AD-d and 33 elderly controls) underwent 3Tesla T1 3D MRI and detailed clinical and cognitive assessments. We used FreeSurfer analysis package to measure CTh and investigate patterns of cortical thinning across groups.

Results

Comparison of CTh between pro-DLB and pro-AD (p<0.05, FDR corrected) showed more right anterior insula thinning in pro-DLB, and more bilateral parietal lobe and left parahippocampal gyri thinning in pro-AD. Comparison of prodromal patients to healthy elderly controls showed the involvement of the same regions. In DLB-d (p<0.05, FDR corrected) cortical thinning was found predominantly in the right temporo-parietal junction, and insula, cingulate, orbitofrontal and lateral occipital cortices. In AD-d(p<0.05, FDR corrected),the most significant areas affected included the entorhinal cortices, parahippocampal gyri and parietal lobes. The comparison of AD-d and DLB-d demonstrated more CTh in AD-d in the left entorhinal cortex (p<0.05, FDR corrected).

Conclusion

Cortical thickness is a sensitive measure for characterising patterns of grey matter atrophy in early stages of DLB distinct from AD. Right anterior insula involvement may be a key region at the prodromal stage of DLB and needs further investigation.  相似文献   

5.

Objectives

To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation.

Design

Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry.

Results

Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators.

Conclusions

The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation.  相似文献   

6.

Background

For word production, we may consciously pursue semantic or phonological search strategies, but it is uncertain whether we can retrieve the different aspects of lexical information independently from each other. We therefore studied the spread of semantic information into words produced under exclusively phonemic task demands.

Methods

42 subjects participated in a letter verbal fluency task, demanding the production of as many s-words as possible in two minutes. Based on curve fittings for the time courses of word production, output spurts (temporal clusters) considered to reflect rapid lexical retrieval based on automatic activation spread, were identified. Semantic and phonemic word relatedness within versus between these clusters was assessed by respective scores (0 meaning no relation, 4 maximum relation).

Results

Subjects produced 27.5 (±9.4) words belonging to 6.7 (±2.4) clusters. Both phonemically and semantically words were more related within clusters than between clusters (phon: 0.33±0.22 vs. 0.19±0.17, p<.01; sem: 0.65±0.29 vs. 0.37±0.29, p<.01). Whereas the extent of phonemic relatedness correlated with high task performance, the contrary was the case for the extent of semantic relatedness.

Conclusion

The results indicate that semantic information spread occurs, even if the consciously pursued word search strategy is purely phonological. This, together with the negative correlation between semantic relatedness and verbal output suits the idea of a semantic default mode of lexical search, acting against rapid task performance in the given scenario of phonemic verbal fluency. The simultaneity of enhanced semantic and phonemic word relatedness within the same temporal cluster boundaries suggests an interaction between content and sound-related information whenever a new semantic field has been opened.  相似文献   

7.

Objective

To further our understanding of the association between self-reported childhood learning disabilities (LDs) and atypical dementia phenotypes (Atypical Dementia), including logopenic primary progressive aphasia (L-PPA), Posterior Cortical Atrophy (PCA), and Dysexecutive-type Alzheimer’s Disease (AD).

Methods

This retrospective case series analysis of 678 comprehensive neuropsychological assessments compared rates of self-reported LD between dementia patients diagnosed with Typical AD and those diagnosed with Atypical Dementia. 105 cases with neuroimaging or CSF data available and at least one neurology follow-up were identified as having been diagnosed by the neuropsychologist with any form of neurodegenerative dementia. These cases were subject to a consensus diagnostic process among three dementia experts using validated clinical criteria for AD and PPA. LD was considered Probable if two or more statements consistent with prior LD were documented within the Social & Developmental History of the initial neuropsychological evaluation.

Results

85 subjects (Typical AD n=68, Atypical AD n=17) were included in the final analysis. In logistic regression models adjusted for age, gender, handedness, education and symptom duration, patients with Probable LD, compared to patients without Probable LD, were significantly more likely to be diagnosed with Atypical Dementia vs. Typical AD (OR 13.1, 95% CI 1.3-128.4). All three of the L-PPA cases reporting a childhood LD endorsed childhood difficulty with language. By contrast, both PCA cases reporting Probable childhood LD endorsed difficulty with attention and/or math.

Conclusions

In people who develop dementia, childhood LD may predispose to atypical phenotypes. Future studies are required to confirm whether atypical neurodevelopment predisposes to regional-specific neuropathology in AD and other dementias.  相似文献   

8.

Background

Confusion between look-alike and sound-alike (LASA) medication names (such as mercaptamine and mercaptopurine) accounts for up to one in four medication errors, threatening patient safety. Error reduction strategies include computerized physician order entry interventions, and ‘Tall Man’ lettering. The purpose of this study is to explore the medication name designation process, to elucidate properties that may prime the risk of confusion.

Methods and Findings

We analysed the formal and semantic properties of 7,987 International Non-proprietary Names (INNs), in relation to naming guidelines of the World Health Organization (WHO) INN programme, and have identified potential for errors. We explored: their linguistic properties, the underlying taxonomy of stems to indicate pharmacological interrelationships, and similarities between INNs. We used Microsoft Excel for analysis, including calculation of Levenshtein edit distance (LED). Compliance with WHO naming guidelines was inconsistent. Since the 1970s there has been a trend towards compliance in formal properties, such as word length, but longer names published in the 1950s and 1960s are still in use. The stems used to show pharmacological interrelationships are not spelled consistently and the guidelines do not impose an unequivocal order on them, making the meanings of INNs difficult to understand. Pairs of INNs sharing a stem (appropriately or not) often have high levels of similarity (<5 LED), and thus have greater potential for confusion.

Conclusions

We have revealed a tension between WHO guidelines stipulating use of stems to denote meaning, and the aim of reducing similarities in nomenclature. To mitigate this tension and reduce the risk of confusion, the stem system should be made clear and well ordered, so as to avoid compounding the risk of confusion at the clinical level. The interplay between the different WHO INN naming principles should be further examined, to better understand their implications for the problem of LASA errors.  相似文献   

9.
Differences in the neural processing of six categories of pictorial stimuli (maps, body parts, objects, animals, famous faces and colours) were investigated using positron emission tomography. Stimuli were presented either with or without the written name of the picture, thereby creating a naming condition and a reading condition. As predicted, naming increased the demands on lexical processes. This was demonstrated by activation of the left temporal lobe in a posterior region associated with name retrieval in several previous studies. This lexical effect was common to all meaningful stimuli and no category-specific effects were observed for naming relative to reading. Nevertheless, category differences were found when naming and reading were considered together. Stimuli with greater visual complexity (animals, faces and maps) enhanced activation in the left extrastriate cortex. Furthermore, map recognition, which requires greater spatio-topographical processing, also activated the right occipito-parietal and parahippocampal cortices. These effects in the visuo-spatial regions emphasize inevitable differences in the perceptual properties of pictorial stimuli. In the semantic temporal regions, famous faces and objects enhanced activation in the left antero-lateral and postero-lateral cortices, respectively. In addition, we showed that the same posterior left temporal region is also activated by body parts. We conclude that category-specific brain activations depend more on differential processing at the perceptual and semantic levels rather than at the lexical retrieval level.  相似文献   

10.

Background

Improved tuberculosis control and the need to contain the spread of drug-resistant strains provide a strong rationale for exploring tuberculosis transmission dynamics at the population level. Whole-genome sequencing provides optimal strain resolution, facilitating detailed mapping of potential transmission pathways.

Methods

We sequenced 22 isolates from a Mycobacterium tuberculosis cluster in New South Wales, Australia, identified during routine 24-locus mycobacterial interspersed repetitive unit typing. Following high-depth paired-end sequencing using the Illumina HiSeq 2000 platform, two independent pipelines were employed for analysis, both employing read mapping onto reference genomes as well as de novo assembly, to control biases in variant detection. In addition to single-nucleotide polymorphisms, the analyses also sought to identify insertions, deletions and structural variants.

Results

Isolates were highly similar, with a distance of 13 variants between the most distant members of the cluster. The most sensitive analysis classified the 22 isolates into 18 groups. Four of the isolates did not appear to share a recent common ancestor with the largest clade; another four isolates had an uncertain ancestral relationship with the largest clade.

Conclusion

Whole genome sequencing, with analysis of single-nucleotide polymorphisms, insertions, deletions, structural variants and subpopulations, enabled the highest possible level of discrimination between cluster members, clarifying likely transmission pathways and exposing the complexity of strain origin. The analysis provides a basis for targeted public health intervention and enhanced classification of future isolates linked to the cluster.  相似文献   

11.

Background

Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age.

Methodology/Principal Findings

We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus.

Conclusions/Significance

The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.  相似文献   

12.

Background

Word frequency is the most important variable in language research. However, despite the growing interest in the Chinese language, there are only a few sources of word frequency measures available to researchers, and the quality is less than what researchers in other languages are used to.

Methodology

Following recent work by New, Brysbaert, and colleagues in English, French and Dutch, we assembled a database of word and character frequencies based on a corpus of film and television subtitles (46.8 million characters, 33.5 million words). In line with what has been found in the other languages, the new word and character frequencies explain significantly more of the variance in Chinese word naming and lexical decision performance than measures based on written texts.

Conclusions

Our results confirm that word frequencies based on subtitles are a good estimate of daily language exposure and capture much of the variance in word processing efficiency. In addition, our database is the first to include information about the contextual diversity of the words and to provide good frequency estimates for multi-character words and the different syntactic roles in which the words are used. The word frequencies are freely available for research purposes.  相似文献   

13.

Objectives

The logopenic variant of primary progressive aphasia is an atypical clinical variant of Alzheimer’s disease which is typically characterized by left temporoparietal atrophy on magnetic resonance imaging and hypometabolism on F-18 fluorodeoxyglucose positron emission tomography. We aimed to characterize and compare patterns of atrophy and hypometabolism in logopenic primary progressive aphasia, and determine which brain regions and imaging modality best differentiates logopenic primary progressive aphasia from typical dementia of the Alzheimer’s type.

Methods

A total of 27 logopenic primary progressive aphasia subjects underwent fluorodeoxyglucose positron emission tomography and volumetric magnetic resonance imaging. These subjects were matched to 27 controls and 27 subjects with dementia of the Alzheimer’s type. Patterns of atrophy and hypometabolism were assessed at the voxel and region-level using Statistical Parametric Mapping. Penalized logistic regression analysis was used to determine what combinations of regions best discriminate between groups.

Results

Atrophy and hypometabolism was observed in lateral temporoparietal and medial parietal lobes, left greater than right, and left frontal lobe in the logopenic group. The logopenic group showed greater left inferior, middle and superior lateral temporal atrophy (inferior p = 0.02; middle p = 0.007, superior p = 0.002) and hypometabolism (inferior p = 0.006, middle p = 0.002, superior p = 0.001), and less right medial temporal atrophy (p = 0.02) and hypometabolism (p<0.001), and right posterior cingulate hypometabolism (p<0.001) than dementia of the Alzheimer’s type. An age-adjusted penalized logistic model incorporating atrophy and hypometabolism achieved excellent discrimination (area under the receiver operator characteristic curve = 0.89) between logopenic and dementia of the Alzheimer’s type subjects, with optimal discrimination achieved using right medial temporal and posterior cingulate hypometabolism, left inferior, middle and superior temporal hypometabolism, and left superior temporal volume.

Conclusions

Patterns of atrophy and hypometabolism both differ between logopenic primary progressive aphasia and dementia of the Alzheimer’s type and both modalities provide excellent discrimination between groups.  相似文献   

14.

Background

Studies disagree on the location of grey matter (GM) atrophy in the multiple sclerosis (MS) brain.

Aim

To examine the consistency between FSL, FreeSurfer, SPM for GM atrophy measurement (for volumes, patient/control discrimination, and correlations with cognition).

Materials and Methods

127 MS patients and 50 controls were included and cortical and deep grey matter (DGM) volumetrics were performed. Consistency of volumes was assessed with Intraclass Correlation Coefficient/ICC. Consistency of patients/controls discrimination was assessed with Cohen’s d, t-tests, MANOVA and a penalized double-loop logistic classifier. Consistency of association with cognition was assessed with Pearson correlation coefficient and ANOVA. Voxel-based morphometry (SPM-VBM and FSL-VBM) and vertex-wise FreeSurfer were used for group-level comparisons.

Results

The highest volumetry ICC were between SPM and FreeSurfer for cortical regions, and the lowest between SPM and FreeSurfer for DGM. The caudate nucleus and temporal lobes had high consistency between all software, while amygdala had lowest volumetric consistency. Consistency of patients/controls discrimination was largest in the DGM for all software, especially for thalamus and pallidum. The penalized double-loop logistic classifier most often selected the thalamus, pallidum and amygdala for all software. FSL yielded the largest number of significant correlations. DGM yielded stronger correlations with cognition than cortical volumes. Bilateral putamen and left insula volumes correlated with cognition using all methods.

Conclusion

GM volumes from FreeSurfer, FSL and SPM are different, especially for cortical regions. While group-level separation between MS and controls is comparable, correlations between regional GM volumes and clinical/cognitive variables in MS should be cautiously interpreted.  相似文献   

15.

Introduction

Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task.

Methods

We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.

Results

Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative.

Conclusions/Significance

We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable tool to assess how area-specific processing is altered in psychiatric disorders such as schizophrenia, and in healthy subjects carrying different genetic polymorphisms.  相似文献   

16.
Recent evidence suggests that lexical-semantic activation spread during language production can be dynamically shaped by contextual factors. In this study we investigated whether semantic processing modes can also affect lexical-semantic activation during word production. Specifically, we tested whether the processing of linguistic ambiguities, presented in the form of puns, has an influence on the co-activation of unrelated meanings of homophones in a subsequent language production task. In a picture-word interference paradigm with word distractors that were semantically related or unrelated to the non-depicted meanings of homophones we found facilitation induced by related words only when participants listened to puns before object naming, but not when they heard jokes with unambiguous linguistic stimuli. This finding suggests that a semantic processing mode of ambiguity perception can induce the co-activation of alternative homophone meanings during speech planning.  相似文献   

17.

Background

Determining the semantic relatedness of two biomedical terms is an important task for many text-mining applications in the biomedical field. Previous studies, such as those using ontology-based and corpus-based approaches, measured semantic relatedness by using information from the structure of biomedical literature, but these methods are limited by the small size of training resources. To increase the size of training datasets, the outputs of search engines have been used extensively to analyze the lexical patterns of biomedical terms.

Methodology/Principal Findings

In this work, we propose the Mutually Reinforcing Lexical Pattern Ranking (ReLPR) algorithm for learning and exploring the lexical patterns of synonym pairs in biomedical text. ReLPR employs lexical patterns and their pattern containers to assess the semantic relatedness of biomedical terms. By combining sentence structures and the linking activities between containers and lexical patterns, our algorithm can explore the correlation between two biomedical terms.

Conclusions/Significance

The average correlation coefficient of the ReLPR algorithm was 0.82 for various datasets. The results of the ReLPR algorithm were significantly superior to those of previous methods.  相似文献   

18.

Background

Integration of information between multiple cortical regions of the pain neuromatrix is thought to underpin pain modulation. Although altered processing in the primary motor (M1) and sensory (S1) cortices is implicated in separate studies, the simultaneous changes in and the relationship between these regions are unknown yet. The primary aim was to assess the effects of anodal transcranial direct current stimulation (a-tDCS) over superficial regions of the pain neuromatrix on M1 and S1 excitability. The secondary aim was to investigate how M1 and S1 excitability changes affect sensory (STh) and pain thresholds (PTh).

Methods

Twelve healthy participants received 20 min a-tDCS under five different conditions including a-tDCS of M1, a-tDCS of S1, a-tDCS of DLPFC, sham a-tDCS, and no-tDCS. Excitability of dominant M1 and S1 were measured before, immediately, and 30 minutes after intervention respectively. Moreover, STh and PTh to peripheral electrical and mechanical stimulation were evaluated. All outcome measures were assessed at three time-points of measurement by a blind rater.

Results

A-tDCS of M1 and dorsolateral prefrontal cortex (DLPFC) significantly increased brain excitability in M1 (p < 0.05) for at least 30 min. Following application of a-tDCS over the S1, the amplitude of the N20-P25 component of SEPs increased immediately after the stimulation (p < 0.05), whilst M1 stimulation decreased it. Compared to baseline values, significant STh and PTh increase was observed after a-tDCS of all three stimulated areas. Except in M1 stimulation, there was significant PTh difference between a-tDCS and sham tDCS.

Conclusion

a-tDCS of M1 is the best spots to enhance brain excitability than a-tDCS of S1 and DLPFC. Surprisingly, a-tDCS of M1 and S1 has diverse effects on S1 and M1 excitability. A-tDCS of M1, S1, and DLPFC increased STh and PTh levels. Given the placebo effects of a-tDCS of M1 in pain perception, our results should be interpreted with caution, particularly with respect to the behavioural aspects of pain modulation.

Trial Registration

Australian New Zealand Clinical Trials, ACTRN12614000817640, http://www.anzctr.org.au/.  相似文献   

19.

Objectives

The overall goal of the study was to identify functional and behavioral differences between individuals with higher tinnitus distress and individuals with lower tinnitus distress. Subsequent exploratory analyses were conducted to investigate the role physical activity may have on the observed results between high and low distress groups. The purpose of the experiment was to identify brain regions to be targeted in future intervention studies for tinnitus.

Design

A total of 32 individuals with varying levels of tinnitus severity were recruited from the Urbana-Champaign area. Volunteers were divided into higher tinnitus distress (HD) and lower tinnitus distress (LD) groups. Note that these groups also significantly differed based on physical activity level and were subsequently stratified into higher and lower physical activity level subgroups for exploratory analysis. While in a functional magnetic resonance imaging (fMRI) scanner, subjects listened to affective sounds classified as pleasant, neutral or unpleasant from the International Affective Digital Sounds database.

Results

The HD group recruited amygdala and parahippocampus to a greater extent than the LD group when listening to affective sounds. The LD group engaged frontal regions to a greater extent when listening to the affective stimuli compared to the HD group. Both higher physical activity level subgroups recruited more frontal regions, and both lower levels of physical activity subgroups recruited more limbic regions respectively.

Conclusion

Individuals with lower tinnitus distress may utilize frontal regions to better control their emotional response to affective sounds. Our analysis also suggests physical activity may contribute to lower tinnitus severity and greater engagement of the frontal cortices. We suggest that future intervention studies focus on changes in the function of limbic and frontal regions when evaluating the efficacy of treatment. Additionally, we recommend further investigation concerning the impact of physical activity level on tinnitus distress.  相似文献   

20.
Visual crowding—the inability to see an object when it is surrounded by flankers in the periphery—does not block semantic activation: unrecognizable words due to visual crowding still generated robust semantic priming in subsequent lexical decision tasks. Based on the previous finding, the current study further explored whether unrecognizable crowded words can be temporally integrated into a phrase. By showing one word at a time, we presented Chinese four-word idioms with either a congruent or incongruent ending word in order to examine whether the three preceding crowded words can be temporally integrated to form a semantic context so as to affect the processing of the ending word. Results from both behavioral (Experiment 1) and Event-Related Potential (Experiment 2 and 3) measures showed congruency effect in only the non-crowded condition, which does not support the existence of unconscious multi-word integration. Aside from four-word idioms, we also found that two-word (modifier + adjective combination) integration—the simplest kind of temporal semantic integration—did not occur in visual crowding (Experiment 4). Our findings suggest that integration of temporally separated words might require conscious awareness, at least under the timing conditions tested in the current study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号