首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual reproduction occurs in two fundamentally different ways: by outcrossing, in which two distinct partners contribute nuclei, or by self-fertilization (selfing), in which both nuclei are derived from the same individual. Selfing is common in flowering plants, fungi, and some animal taxa. We investigated the genetic basis of selfing in the homothallic fungus Aspergillus nidulans. We demonstrate that alpha and high-mobility group domain mating-type (MAT) genes, found in outcrossing species, are both present in the genome of A. nidulans and that their expression is required for normal sexual development and ascospore production. Balanced overexpression of MAT genes suppressed vegetative growth and stimulated sexual differentiation under conditions unfavorable for sex. Sexual reproduction was correlated with significantly increased expression of MAT genes and key genes of a pheromone-response MAP-kinase signaling pathway involved in heterothallic outcrossing. Mutation of a component MAP-kinase mpkB gene resulted in sterility. These results indicate that selfing in A. nidulans involves activation of the same mating pathways characteristic of sex in outcrossing species, i.e., self-fertilization does not bypass requirements for outcrossing sex but instead requires activation of these pathways within a single individual. However, unlike heterothallic species, aspects of pheromone signaling appeared to be independent of MAT control.  相似文献   

2.
Sex in fungi is driven by peptide pheromones sensed through seven‐transmembrane pheromone receptors. In Cryptococcus neoformans, sexual reproduction occurs through an outcrossing/heterothallic a ‐ sexual cycle or an inbreeding/homothallic – unisexual mating process. Pheromone receptors encoded by the mating‐type locus ( MAT ) mediate reciprocal pheromone sensing during opposite‐sex mating and contribute to but are not essential for unisexual mating. A pheromone receptor‐like gene, CPR2 , was discovered that is not encoded by MAT and whose expression is induced during a ‐ mating. cpr2 mutants are fertile but have a fusion defect and produce abnormal hyphal structures, whereas CPR2 overexpression elicits unisexual reproduction. When heterologously expressed in Saccharomyces cerevisiae , Cpr2 activates pheromone responses in the absence of any ligand. This constitutive activity results from an unconventional residue, Leu222, in place of a conserved proline in transmembrane domain six; a Cpr2L222P mutant is no longer constitutively active. Cpr2 engages the same G‐protein activated signalling cascade as the Ste3 a /α pheromone receptors, and thereby competes for pathway activation. This study established a new paradigm in which a naturally occurring constitutively active G protein‐coupled receptor governs morphogenesis in fungi.  相似文献   

3.
Ascochyta and Phoma are fungal genera containing several important plant pathogenic species. These genera are morphologically similar, and recent molecular studies performed to unravel their phylogeny have resulted in the establishment of several new genera within the newly erected Didymellaceae family. An analysis of the structure of fungal mating-type genes can contribute to a better understanding of the taxonomic relationships of these plant pathogens, and may shed some light on their evolution and on differences in sexual strategy and pathogenicity. We analysed the mating-type loci of phylogenetically closely related Ascochyta and Phoma species (Phoma clematidina, Didymella vitalbina, Didymella clematidis, Peyronellaea pinodes and Peyronellaea pinodella) that co-occur on the same hosts, either on Clematis or Pisum. The results confirm that the mating-type genes provide the information to distinguish between the homothallic Pey. pinodes (formerly Ascochyta pinodes) and the heterothallic Pey. pinodella (formerly Phoma pinodella), and indicate the close phylogenetic relationship between these two species that are part of the disease complex responsible for Ascochyta blight on pea. Furthermore, our analysis of the mating-type genes of the fungal species responsible for causing wilt of Clematis sp. revealed that the heterothallic D. vitalbina (Phoma anamorph) is more closely related to the homothallic D. clematidis (Ascochyta anamorph) than to the heterothallic P. clematidina. Finally, our results indicate that homothallism in D. clematidis resulted from a single crossover between MAT1-1 and MAT1-2 sequences of heterothallic ancestors, whereas a single crossover event followed by an inversion of a fused MAT1/2 locus resulted in homothallism in Pey. pinodes.  相似文献   

4.
Major insights into sexual development and cryptic sexuality within filamentous fungi have been gained from investigations using Aspergillus species. Here, an overview is first given into sexual morphogenesis in the aspergilli, describing the different types of sexual structures formed and how their production is influenced by a variety of environmental and nutritional factors. It is argued that the formation of cleistothecia and accessory tissues, such as Hülle cells and sclerotia, should be viewed as two independent but co-ordinated developmental pathways. Next, a comprehensive survey of over 75 genes associated with sexual reproduction in the aspergilli is presented, including genes relating to mating and the development of cleistothecia, sclerotia and ascospores. Most of these genes have been identified from studies involving the homothallic Aspergillus nidulans, but an increasing number of studies have now in addition characterized 'sex-related' genes from the heterothallic species Aspergillus fumigatus and Aspergillus flavus. A schematic developmental genetic network is proposed showing the inter-relatedness between these genes. Finally, the discovery of sexual reproduction in certain Aspergillus species that were formerly considered to be strictly asexual is reviewed, and the importance of these findings for cryptic sexuality in the aspergilli as a whole is discussed.  相似文献   

5.
Idnurm A 《Eukaryotic cell》2011,10(11):1485-1491
The original report of sex in fungi dates 2 centuries ago to the species Syzygites megalocarpus (Mucoromycotina). The organism was subsequently used in 1904 to represent self-fertile homothallic species when the concepts of heterothallism and homothallism were developed for the fungal kingdom. In this study, two putative sex/MAT loci were identified in individual strains of S. megalocarpus, accounting for its homothallic behavior. The strains encode both of the high-mobility-group domain-containing proteins, SexM and SexP, flanked by RNA helicase and glutathione oxidoreductase genes that are found adjacent to the mating-type loci in other Mucoromycotina species. The presence of pseudogenes and the arrangement of genes suggest that the origin of homothallism in this species is from a heterothallic relative, obtained via a chromosomal rearrangement to switch two alleles into two separated loci within a single genetic background. Similar events have given rise to homothallic species from heterothallic species in ascomycete fungi, demonstrating that conserved forces shape the evolution of sex determination and speciation in highly diverged fungi.  相似文献   

6.
Sex determination and evolution of unisexuality in the Conchostraca   总被引:5,自引:3,他引:2  
Clay Sassaman 《Hydrobiologia》1995,298(1-3):45-65
Field collected or laboratory-reared samples of 60 species of conchostracans (representing all extant genera) indicate that males and females are equally common in most species. Deviations from this pattern occur in four lineages.Cyzicus andLeptestheria each include at least one unisexual species; many species of Limnadiinae are either unisexual or characterized by female-biased sex ratios; and Cyclestheriidae are either unisexual or express males in the later generations of their life cycles. Laboratory studies indicate that species with sex ratios near unity are gonochoric (obligately sexual), whereas females in species with female-biased sex ratios are capable of both outcrossing and selfing modes of reproduction. Phylogenetic analysis of patterns of reproduction suggest that sexual reproduction is the primitive condition. Genetic analysis of sexual species indicate that gender is determined by one or a few genetic factors and that the male-determining allele is recessive. The inheritance of gender in androdioecious species (where females are capable of self-fertilization) is similar to that in sexual species. Androdioecy is likely to be the intermediate stage between obligately sexual reproduction and unisexuality in the Limnadiinae. The phylogenetic distribution of sex ratio variation suggests that unisexuality in Cyzicidae, Leptestheriidae, and Cyclestheriidae has arisen independently of that in the Limnadiinae and that these cases have evolved by different evolutionary pathways.  相似文献   

7.
8.
Aneuploidy is known to be deleterious and underlies several common human diseases, including cancer and genetic disorders such as trisomy 21 in Down''s syndrome. In contrast, aneuploidy can also be advantageous and in fungi confers antifungal drug resistance and enables rapid adaptive evolution. We report here that sexual reproduction generates phenotypic and genotypic diversity in the human pathogenic yeast Cryptococcus neoformans, which is globally distributed and commonly infects individuals with compromised immunity, such as HIV/AIDS patients, causing life-threatening meningoencephalitis. C. neoformans has a defined a-α opposite sexual cycle; however, >99% of isolates are of the α mating type. Interestingly, α cells can undergo α-α unisexual reproduction, even involving genotypically identical cells. A central question is: Why would cells mate with themselves given that sex is costly and typically serves to admix preexisting genetic diversity from genetically divergent parents? In this study, we demonstrate that α-α unisexual reproduction frequently generates phenotypic diversity, and the majority of these variant progeny are aneuploid. Aneuploidy is responsible for the observed phenotypic changes, as chromosome loss restoring euploidy results in a wild-type phenotype. Other genetic changes, including diploidization, chromosome length polymorphisms, SNPs, and indels, were also generated. Phenotypic/genotypic changes were not observed following asexual mitotic reproduction. Aneuploidy was also detected in progeny from a-α opposite-sex congenic mating; thus, both homothallic and heterothallic sexual reproduction can generate phenotypic diversity de novo. Our study suggests that the ability to undergo unisexual reproduction may be an evolutionary strategy for eukaryotic microbial pathogens, enabling de novo genotypic and phenotypic plasticity and facilitating rapid adaptation to novel environments.  相似文献   

9.
Barksdale , Alma Whiffen . (New York Botanical Garden, New York.) Inter-thallic sexual reactions in Achlya, a genus of the aquatic fungi . Amer. Jour. Bot. 47(1): 14—23. Illus. 1960.– Inter-thallic sexual reactions, involving the coöperative induction of sexual organs, have been found to occur between members of homothallic, as well as heterothallic species of the sub-genus Achlya. The induction of sexual organs, both on single thalli and on paired thalli, is temperature-dependent. Sexual organs were initiated at 15°—20°C. in 14 of 27 heterothallic strains that were usually sterile at 25°. The hermaphroditic sexual organs were like those of either A. ambisexualis or A. bisexualis in 19 strains; like those of A. prolifera in 3 strains; like those of A. inflata in 1 strain; and like those of A. americana in 1 strain. In some instances, the sexual reaction between paired thalli was complete at 20°C. but incomplete (i.e., oospores were not formed) at 25°C. The heterothallic and homothallic strains studied could be assigned to 1 of 12 (6 female and 6 male) inter-action types, on the basis of their sexual responses. These sexual types are characterized and their possible usefulness in indicating kinship among species of Achlya is assessed. The possible origin of heterothallic from homothallic forms of Achlya is discussed.  相似文献   

10.
Unisexual reproduction is a novel homothallic sexual cycle recently discovered in both ascomycetous and basidiomycetous pathogenic fungi. It is a form of selfing that induces the yeast-to-hyphal dimorphic transition in isolates of the α mating type of the human fungal pathogen Cryptococcus neoformans. Unisexual reproduction may benefit the pathogen by facilitating sexual reproduction in the absence of the opposite a mating type and by generating infectious propagules called basidiospores. Here, we report an independent potential selective advantage of unisexual reproduction beyond genetic exchange and recombination. We competed a wild-type strain capable of undergoing unisexual reproduction with mutants defective in this developmental pathway and found that unisexual reproduction provides a considerable dispersal advantage through hyphal growth and sporulation. Our results show that unisexual reproduction may serve to facilitate access to both nutrients and potential mating partners and may provide a means to maintain the capacity for dimorphic transitions in the environment.  相似文献   

11.
Lee J  Leslie JF  Bowden RL 《Eukaryotic cell》2008,7(7):1211-1221
In heterothallic ascomycete fungi, idiomorphic alleles at the MAT locus control two sex pheromone-receptor pairs that function in the recognition and chemoattraction of strains with opposite mating types. In the ascomycete Gibberella zeae, the MAT locus is rearranged such that both alleles are adjacent on the same chromosome. Strains of G. zeae are self-fertile but can outcross facultatively. Our objective was to determine if pheromones retain a role in sexual reproduction in this homothallic fungus. Putative pheromone precursor genes (ppg1 and ppg2) and their corresponding pheromone receptor genes (pre2 and pre1) were identified in the genomic sequence of G. zeae by sequence similarity and microsynteny with other ascomycetes. ppg1, a homolog of the Saccharomyces alpha-factor pheromone precursor gene, was expressed in germinating conidia and mature ascospores. Expression of ppg2, a homolog of the a-factor pheromone precursor gene, was not detected in any cells. pre2 was expressed in all cells, but pre1 was expressed weakly and only in mature ascospores. ppg1 or pre2 deletion mutations reduced fertility in self-fertilization tests by approximately 50%. Deltappg1 reduced male fertility and Deltapre2 reduced female fertility in outcrossing tests. In contrast, Deltappg2 and Deltapre1 had no discernible effects on sexual function. Deltappg1/Deltappg2 and Deltapre1/Deltapre2 double mutants had the same phenotype as the Deltappg1 and Deltapre2 single mutants. Thus, one of the putative pheromone-receptor pairs (ppg1/pre2) enhances, but is not essential for, selfing and outcrossing in G. zeae whereas no functional role was found for the other pair (ppg2/pre1).  相似文献   

12.
Aspergillus fumigatus is a medically important opportunistic pathogen and a major cause of respiratory allergy. The species has long been considered an asexual organism. However, genome analysis has revealed the presence of genes associated with sexual reproduction, including a MAT-2 high-mobility group mating-type gene and genes for pheromone production and detection (Galagan et al., personal communication; Nierman et al., personal communication). We now demonstrate that A. fumigatus has other key characteristics of a sexual species. We reveal the existence of isolates containing a complementary MAT-1 alpha box mating-type gene and show that the MAT locus has an idiomorph structure characteristic of heterothallic (obligate sexual outbreeding) fungi. Analysis of 290 worldwide clinical and environmental isolates with a multiplex-PCR assay revealed the presence of MAT1-1 and MAT1-2 genotypes in similar proportions (43% and 57%, respectively). Further population genetic analyses provided evidence of recombination across a global sampling and within North American and European subpopulations. We also show that mating-type, pheromone-precursor, and pheromone-receptor genes are expressed during mycelial growth. These results indicate that A. fumigatus has a recent evolutionary history of sexual recombination and might have the potential for sexual reproduction. The possible presence of a sexual cycle is highly significant for the population biology and disease management of the species.  相似文献   

13.
Mating type genes are central to sexual reproduction and compatibility in Ascomycete fungi. However the "MAT" loci experience unique evolutionary pressures that can result in rapid divergence and enhanced inter-specific gene-flow (lateral gene transfer). In this study, molecular evolution of MAT loci was considered using the genus Fusarium (Teleomorph: Gibberella) as a model. Both MAT1-1 and MAT1-2 "idiomorphs" from eleven species of the Gibberellafujikuroi species complex were sequenced. Molecular evolution of the MAT loci from these heterothallic (self-sterile) species was compared with that of the MAT loci from nine homothallic (self-fertile) species in the Fusariumgraminearum species complex. Although Fusarium has previously been thought to have the same complement of four MAT genes that are found in Neurospora, we found evidence of a novel gene, MAT1-2-3, that may be specific to the Hypocreales. All MAT genes share a similar set of cis-regulatory motifs, although homothallic species might have recruited novel regulatory elements, which could potentially facilitate alternate expression of MAT1-1-1 and MAT1-2-1. FusariumMAT loci displayed evidence consistent with historical lateral gene-flow. Most notably, the MAT1-1 idiomorph of Fusariumsacchari appears to be unrelated to those of other species in the G.fujikuroi complex. In general, FusariumMAT genes are highly divergent. Both positive selection and relaxed selective constraint could account for this phenomenon. However, the extent of both recombination and inter-specific gene-flow in the MAT locus also appears to affect the rate of divergence.  相似文献   

14.

Background

Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or in vitro and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the Phialocephala fortinii s. l. - Acephala applanata species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (MAT) genes involved in reproductive processes.

Results

The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas A. applanata had a homothallic (self-fertile) MAT locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. MAT genes were shown to evolve under strong purifying selection.

Conclusions

The signature of sex was found in worldwide populations of PAC species and functionality of MAT genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and in vitro crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.  相似文献   

15.
The filamentous ascomycete genus Neurospora encompasses taxa with a wide range of reproductive modes. Sexual reproduction in this genus can be divided into three major modes; heterothallism (self-incompatibility), homothallism (self-compatibility) and pseudohomothallism (partial self-compatibility). In addition to the sexual pathway, most of the heterothallic taxa propagate with morphologically distinct, vegetative dissemination propagules (macroconidia), while this feature is undetected in the majority of the homothallic taxa. In this study, we used sequence information of seven nuclear gene loci from 43 taxa (295 of the possible 301 locus-by-taxon combinations) to create a phylogeny of Neurospora. The results suggest that transitions in reproductive mode have occurred at multiple times within this group of fungi. Although a homothallic ancestor would imply fewer switches in reproductive mode, we argue that the ancestor of Neurospora was likely heterothallic and that homothallism has evolved independently at least six times in the evolutionary history of the genus. Furthermore, the two pseudohomothallic taxa of Neurospora (N. tetrasperma and N. tetraspora) represent two independent origins of pseudohomothallism. Likelihood ratio tests of substitution rates among branches in the phylogeny indicate that reproductive mode is an important factor driving genome evolution in Neurospora. First, an increased level of non-synonymous/synonymous substitutions in branches delineating homothallic taxa was found, suggesting a reduced efficiency of purifying selection in these taxa. Furthermore, elevated nucleotide substitution rates were found in heterothallic, conidia-producing, lineages as compared to the homothallic non-conidiating lineages. The latter finding is likely due to the presence of conidia, i.e., a higher rate of mitotic divisions inducing mutations, and/or that the homothallic taxa have evolved a lower mutation rate to avoid genomic degeneration.  相似文献   

16.
THE CONTROL OF SEXUAL MORPHOGENESIS IN THE ASCOMYCOTINA   总被引:2,自引:0,他引:2  
(1) A series of factors controls sexual morphogenesis in the Ascomycotina, a process involving the formation of novel structures such as ascocarps (fruit bodies) and asci (sacs containing spores) during sexual reproduction. (2) Environmental and genetic factors must be correct before Ascomycetes may sexually reproduce. Compatibility in many heterothallic species is under polygenic control, with the mating type loci and also other genetic factors determining the productivity of sexual crosses. (3) Classical genetic studies have shown that sexual morphogenesis involves the expression of a series of developmentally regulated genes, and this has been confirmed by recent molecular studies which have demonstrated changes in patterns of mRNA and protein synthesis during ascocarp formation. (4) Hyphal differentiation leading to the formation of mature fruit bodies occurs in response to a series of signals, which include various physical and chemical factors. (5) Chemical sex factors have been identified which are believed to have important regulatory or nutritional roles in sexual morphogenesis. These include the following. (a) Diffusible sex hormones which may regulate developmental switching between asexual and sexual modes of reproduction, including (i) pheromones involved with the induction of gametangia and gamete attraction, and (ii) sex morphogens involved with triggering particular stages of fruit body formation. (b) Sexual growth substances which are required as nutrients, and may be precursors for the production of sex hormones, or metabolites used in the synthesis of novel sexual structures. Most of these sex factors are lipids. (6) Certain sex morphogens and sexual growth substances have been shown to exhibit activity in a variety of fungal species, suggesting that fungi of related phylogenetic descent may utilize similar metabolites or signalling factors during sexual reproduction. (7) Phenoloxidase enzymes may catalyse hyphal aggregation in developing fruit bodies. (8) Initial stages of ascocarp development may occur independently of the events of the sexual cycle. However, a link(s) with the functional ascogenous hyphae is needed for the formation of morphologically mature ascocarps. (9) Suitable environmental conditions are sufficient to trigger sexual morphogenesis in homothallic Ascomycetes. However, an extra level of control is present in heterothallic species, with a compatible partner required to complete sexual reproduction. This may be partly because novel regulatory products, formed by the combined action of the mating type loci of different partners, are required for further ascocarp development. (10) Further research is required to identify more fungal chemical sex factors and to determine the role of environmental stress in controlling sexual morphogenesis, and how this may be related to temporal patterns in the expression of mating type genes.  相似文献   

17.
18.
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (~2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.  相似文献   

19.
20.
Fungi capable of sexual reproduction use heterothallic (self-sterile) or homothallic (self-fertile) mating strategies. In most ascomycetes, a single mating type locus, MAT, with two alternative forms (MAT1-1 and MAT1-2) called idiomorphs, controls mating ability. In heterothallic ascomycetes, these alternative idiomorphs reside in different nuclei. In contrast, most homothallic ascomycetes carry both MAT1-1 and MAT1-2 in a single nucleus, usually closely linked. An example of the latter is Gibberella zeae, a species that is capable of both selfing and outcrossing. G. zeae is a devastating cereal pathogen of ubiquitous geographical distribution, and also a producer of mycotoxins that threaten human and animal health. We asked whether G. zeae could be made strictly heterothallic by manipulation of MAT. Targeted gene replacement was used to differentially delete MAT1-1 or MAT1-2 from a wild-type haploid MAT1-1; MAT1-2 strain, resulting in MAT1-1; mat1-2, mat1-1; MAT1-2 strains that were self-sterile, yet able to cross to wild-type testers and, more importantly, to each other. These results indicated that differential deletion of MAT idiomorphs eliminates selfing ability of G. zeae, but the ability to outcross is retained. They also indicated that both MAT idiomorphs are required for self-fertility. To our knowledge, this is the first report of complete conversion of fungal reproductive strategy from homothallic to heterothallic by targeted manipulation of MAT. Practically, this approach opens the door to simple and efficient procedures for obtaining sexual recombinants of G. zeae that will be useful for genetic analyses of pathogenicity and other traits, such as the ability to produce mycotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号