首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs8], c.1779dupT [p.Glu594], and c.2224_2225dupTT [p.Leu742Phefs7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein’s signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/β-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics.  相似文献   

2.

Background

There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8–10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1–7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8–10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D.

Methodology and Principal Findings

We performed targeted capillary resequencing of HNF1A exons 8–10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤45 years) and/or family history of T2D (≥1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9−24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected.

Conclusions and Significance

We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.  相似文献   

3.
4.
BackgroundThe classical protein tyrosine phosphatases (PTPs) have been widely reported to be associated with various human malignancies including colorectal cancer (CRC). However, there are few comprehensive analyses of the association between the classical PTP genes and CRC risk.MethodsFirst, a bioinformatics analysis was performed to identify missense variants within the classical PTP gene family. Second, exome-wide association data and an independent population study were conducted to evaluate effects of candidate variants on CRC risk. Finally, functional assays based on signaling pathways were applied to uncover the potential pathogenic mechanism.ResultsWe identified that PTPN12 rs3750050 G allele presented a 19% increase the risk of CRC, with an OR of 1.19 (95% CI = 1.09–1.30, P = 1.015×10−4) under an additive model in the combined analysis. Furthermore, biochemical assays illustrated that rs3750050 could impair the inhibitory effect of PTPN12 on Ras/MEK/ERK signaling by impeding SHC dephosphorylation, increase the expression of cyclin D1 and ultimately lead to aberrant cell proliferation, thus contributing to CRC pathogenesis.ConclusionOur study highlights that PTPN12 rs3750050 could increase CRC risk by modifying Ras/MEK/ERK signaling. This work provides a novel insight into the roles of genetic variants within PTP genes in the pathogenesis of CRC.  相似文献   

5.
6.
Low levels of high density lipoprotein-cholesterol (HDL-C) are associated with an elevated risk of arteriosclerotic coronary heart disease. Heritability of HDL-C levels is high. In this research discovery study, we used whole-exome sequencing to identify damaging gene variants that may play significant roles in determining HDL-C levels. We studied 204 individuals with a mean HDL-C level of 27.8 ± 6.4 mg/dl (range: 4–36 mg/dl). Data were analyzed by statistical gene burden testing and by filtering against candidate gene lists. We found 120 occurrences of probably damaging variants (116 heterozygous; four homozygous) among 45 of 104 recognized HDL candidate genes. Those with the highest prevalence of damaging variants were ABCA1 (n = 20), STAB1 (n = 9), OSBPL1A (n = 8), CPS1 (n = 8), CD36 (n = 7), LRP1 (n = 6), ABCA8 (n = 6), GOT2 (n = 5), AMPD3 (n = 5), WWOX (n = 4), and IRS1 (n = 4). Binomial analysis for damaging missense or loss-of-function variants identified the ABCA1 and LDLR genes at genome-wide significance. In conclusion, whole-exome sequencing of individuals with low HDL-C showed the burden of damaging rare variants in the ABCA1 and LDLR genes is particularly high and revealed numerous occurrences in HDL candidate genes, including many genes identified in genome-wide association study reports. Many of these genes are involved in cancer biology, which accords with epidemiologic findings of the association of HDL deficiency with increased risk of cancer, thus presenting a new area of interest in HDL genomics.  相似文献   

7.
Shigellosis is a heavy disease burden in China especially in children aged under 5 years. However, the age-related factors involved in transmission of shigellosis are unclear. An age-specific Susceptible–Exposed–Infectious/Asymptomatic–Recovered (SEIAR) model was applied to shigellosis surveillance data maintained by Hubei Province Centers for Disease Control and Prevention from 2005 to 2017. The individuals were divided into four age groups (≤ 5 years, 6–24 years, 25–59 years, and ≥ 60 years). The effective reproduction number (Reff), including infectivity (RI) and susceptibility (RS) was calculated to assess the transmissibility of different age groups. From 2005 to 2017, 130,768 shigellosis cases were reported in Hubei Province. The SEIAR model fitted well with the reported data (P < 0.001). The highest transmissibility (Reff) was from ≤ 5 years to the 25–59 years (mean: 0.76, 95% confidence interval [CI]: 0.34–1.17), followed by from the 6–24 years to the 25–59 years (mean: 0.69, 95% CI: 0.35–1.02), from the ≥ 60 years to the 25–59 years (mean: 0.58, 95% CI: 0.29–0.86), and from the 25–59 years to 25–59 years (mean: 0.50, 95% CI: 0.21–0.78). The highest infectivity was in ≤ 5 years (RI = 1.71), and was most commonly transmitted to the 25–59 years (45.11%). The highest susceptibility was in the 25–59 years (RS = 2.51), and their most common source was the ≤ 5 years (30.15%). Furthermore, “knock out” simulation predicted the greatest reduction in the number of cases occurred by when cutting off transmission routes among ≤ 5 years and from 25–59 years to ≤ 5 years. Transmission in ≤ 5 years occurred mainly within the group, but infections were most commonly introduced by individuals in the 25–59 years. Infectivity was highest in the ≤ 5 years and susceptibility was highest in the 25–59 years. Interventions to stop transmission should be directed at these age groups.  相似文献   

8.

Objective

Early-onset colorectal cancer (CRC) represents a clinically distinct form of CRC that is often associated with a poor prognosis. Methylation levels of genomic repeats such as LINE-1 elements have been recognized as independent factors for increased cancer-related mortality. The methylation status of LINE-1 elements in early-onset CRC has not been analyzed previously.

Design

We analyzed 343 CRC tissues and 32 normal colonic mucosa samples, including 2 independent cohorts of CRC diagnosed ≤50 years old (n = 188), a group of sporadic CRC >50 years (MSS n = 89; MSI n = 46), and a group of Lynch syndrome CRCs (n = 20). Tumor mismatch repair protein expression, microsatellite instability status, LINE-1 and MLH1 methylation, somatic BRAF V600E mutation, and germline MUTYH mutations were evaluated.

Results

Mean LINE-1 methylation levels (±SD) in the five study groups were early-onset CRC, 56.6% (8.6); sporadic MSI, 67.1% (5.5); sporadic MSS, 65.1% (6.3); Lynch syndrome, 66.3% (4.5) and normal mucosa, 76.5% (1.5). Early-onset CRC had significantly lower LINE-1 methylation than any other group (p<0.0001). Compared to patients with <65% LINE-1 methylation in tumors, those with ≥65% LINE-1 methylation had significantly better overall survival (p = 0.026, log rank test).

Conclusions

LINE-1 hypomethylation constitutes a potentially important feature of early-onset CRC, and suggests a distinct molecular subtype. Further studies are needed to assess the potential of LINE-1 methylation status as a prognostic biomarker for young people with CRC.  相似文献   

9.

Objectives

We tested the a priori hypothesis that self-perceived and real presences of risks for colorectal cancer (CRC) are associated with better knowledge of the symptoms and risk factors for CRC, respectively.

Methods

One territory-wide invitation for free CRC screening between 2008 to 2012 recruited asymptomatic screening participants aged 50–70 years in Hong Kong. They completed survey items on self-perceived and real presences of risks for CRC (advanced age, male gender, positive family history and smoking) as predictors, and knowledge of CRC symptoms and risk factors as outcome measures, respectively. Their associations were evaluated by binary logistic regression analyses.

Results

From 10,078 eligible participants (average age 59 years), the mean knowledge scores for symptoms and risk factors were 3.23 and 4.06, respectively (both score range 0–9). Male gender (adjusted odds ratio [AOR] = 1.34, 95% C.I. 1.20–1.50, p<0.01), self-perception as not having any risks for CRC (AOR = 1.12, 95% C.I. 1.01–1.24, p = 0.033) or uncertainty about having risks (AOR = 1.94, 95% C.I. 1.55–2.43, p<0.001), smoking (AOR 1.38, 95% C.I. 1.11–1.72, p = 0.004), and the absence of family history (AOR 0.61 to 0.78 for those with positive family history, p<0.001) were associated with poorer knowledge scores (≤4) of CRC symptoms. These factors remained significant for knowledge of risk factors.

Conclusions

Male and smokers were more likely to have poorer knowledge but family history of CRC was associated with better knowledge. Since screening of these higher risk individuals could lead to greater yield of colorectal neoplasm, educational interventions targeted to male smokers were recommended.  相似文献   

10.
Stature, bone size, and bone mass are interrelated traits with high heritability, but the major genes that govern these phenotypes remain unknown. Independent genomewide quantitative-trait locus studies have suggested a locus for bone-mineral density and stature at chromosome 11q12-13, a region harboring the low-density lipoprotein receptor–related protein 5 (LRP5) gene. Mutations in the LRP5 gene were recently implicated in osteoporosis-pseudoglioma and “high-bone-mass” syndromes. To test whether polymorphisms in the LRP5 gene contribute to bone-mass determination in the general population, we studied a cross-sectional cohort of 889 healthy whites of both sexes. Significant associations were found for a missense substitution in exon 9 (c.2047G→A) with lumbar spine (LS)–bone-mineral content (BMC) (P=.0032), with bone area (P=.0014), and with stature (P=.0062). The associations were observed mainly in adult men, in whom LRP5 polymorphisms accounted for 15% of the traits’ variances. Results of haplotype analysis of five single-nucleotide polymorphisms in the LRP5 region suggest that additional genetic variation within the locus might also contribute to bone-mass and size determination. To confirm our results, we investigated whether LRP5 haplotypes were associated with 1-year gain in vertebral bone mass and size in 386 prepubertal children. Significant associations were observed for changes in BMC (P=.0348) and bone area (P=.0286) in males but not females, independently supporting our observations of a mostly male-specific effect, as seen in the adults. Together, these results suggest that LRP5 variants significantly contribute to LS–bone-mass and size determination in men by influencing vertebral bone growth during childhood.  相似文献   

11.
The overactivation of canonical Wnt/β‐catenin pathway and the maintenance of cancer stem cells (CSCs) are essential for the onset and malignant progression of most human cancers. However, their regulatory mechanism in colorectal cancer (CRC) has not yet been well demonstrated. Low‐density lipoprotein receptor‐related protein 5 (LRP5) has been identified as an indispensable co‐receptor with frizzled family members for the canonical Wnt/β‐catenin signal transduction. Herein, we show that activation of LRP5 gene promotes CSCs‐like phenotypes, including tumorigenicity and drug resistance in CRC cells, through activating the canonical Wnt/β‐catenin and IL‐6/STAT3 signalling pathways. Clinically, the expression of LRP5 is upregulated in human CRC tissues and closely associated with clinical stages of patients with CRC. Further analysis showed silencing of endogenous LRP5 gene is sufficient to suppress the CSCs‐like phenotypes of CRC through inhibiting these two pathways. In conclusion, our findings not only reveal a regulatory cross‐talk between canonical Wnt/β‐catenin signalling pathway, IL‐6/STAT3 signalling pathway and CD133‐related stemness that promote the malignant behaviour of CRC, but also provide a valuable target for the diagnosis and treatment of CRC.  相似文献   

12.

Background

Age-related macular degeneration (AMD), a chronic neurodegenerative and neovascular retinal disease, is the leading cause of blindness in elderly people of western European origin. While structural and functional alterations in mitochondria (mt) and their metabolites have been implicated in the pathogenesis of chronic neurodegenerative and vascular diseases, the relationship of inherited variants in the mitochondrial genome and mt haplogroup subtypes with advanced AMD has not been reported in large prospective cohorts.

Methodology/Prinicipal Findings

We examined the relationship of inherited mtDNA variants with advanced AMD in 1168 people using a three-stage design on samples from 12-year and 10-year prospective studies on the natural history of age-related eye disease. In Stage I we resequenced the entire genome in 99 elderly AMD-free controls and 215 people with advanced AMD from the 12-year study. A consistent association with AMD in 14 of 17 SNPs characterizing the mtDNA T haplogroup emerged. Further analysis revealed these associations were driven entirely by the T2 haplogroup, and characterized by two variants in Complex I genes (A11812G of MT-ND4 and A14233G of MT-ND6). We genotyped T haplogroups in an independent sample of 490 cases and 61 controls from the same study (Stage II) and in 56 cases and 246 controls from the 10-year study (Stage III). People in the T2 haplogroup were approximately 2.5 times more likely to have advanced AMD than their peers (odds ratio [OR] = 2.54, 95%CI 1.36–4.80, P≤0.004) after considering the totality of evidence. Findings persisted after considering the impact of AMD-associated variants A69S and Y402H (OR = 5.19, 95%CI 1.19–22.69, P≤0.029).

Conclusion

Loci defining the mtDNA T2 haplogroup and Complex I are reasonable targets for novel functional analyses and therapeutic research in AMD.  相似文献   

13.
14.
This study was aimed at identifying genomic regions controlling feeding behavior in Danish Duroc boars and its potential implications for eating behavior in humans. Data regarding individual daily feed intake (DFI), total daily time spent in feeder (TPD), number of daily visits to feeder (NVD), average duration of each visit (TPV), mean feed intake per visit (FPV) and mean feed intake rate (FR) were available for 1130 boars. All boars were genotyped using the Illumina Porcine SNP60 BeadChip. The association analyses were performed using the GenABEL package in the R program. Sixteen SNPs were found to have moderate genome-wide significance (p<5E-05) and 76 SNPs had suggestive (p<5E-04) association with feeding behavior traits. MSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD. Thirty-six SNPs were located in genome regions where QTLs have previously been reported for behavior and/or feed intake traits in pigs. The regions: 64–65 Mb on SSC 1, 124–130 Mb on SSC 8, 63–68 Mb on SSC 11, 32–39 Mb and 59–60 Mb on SSC 12 harbored several signifcant SNPs. Synapse genes (GABRR2, PPP1R9B, SYT1, GABRR1, CADPS2, DLGAP2 and GOPC), dephosphorylation genes (PPM1E, DAPP1, PTPN18, PTPRZ1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results are important for genetic improvement of pig feed efficiency. We have also conducted pig-human comparative gene mapping to reveal key genomic regions and/or genes on the human genome that may influence eating behavior in human beings and consequently affect the development of obesity and metabolic syndrome. This is the first translational genomics study of its kind to report potential candidate genes for eating behavior in humans.  相似文献   

15.
Hereditary factors are presumed to play a role in one third of colorectal cancer (CRC) cases. However, in the majority of familial CRC cases the genetic basis of predisposition remains unexplained. This is particularly true for families with few affected individuals. To identify susceptibility genes for this common phenotype, we examined familial cases derived from a consecutive series of 1514 Finnish CRC patients. Ninety-six familial CRC patients with no previous diagnosis of a hereditary CRC syndrome were included in the analysis. Eighty-six patients had one affected first-degree relative, and ten patients had two or more. Exome sequencing was utilized to search for genes harboring putative loss-of-function variants, because such alterations are likely candidates for disease-causing mutations. Eleven genes with rare truncating variants in two or three familial CRC cases were identified: UACA, SFXN4, TWSG1, PSPH, NUDT7, ZNF490, PRSS37, CCDC18, PRADC1, MRPL3, and AKR1C4. Loss of heterozygosity was examined in all respective cancer samples, and was detected in seven occasions involving four of the candidate genes. In all seven occasions the wild-type allele was lost (P = 0.0078) providing additional evidence that these eleven genes are likely to include true culprits. The study provides a set of candidate predisposition genes which may explain a subset of common familial CRC. Additional genetic validation in other populations is required to provide firm evidence for causality, as well as to characterize the natural history of the respective phenotypes.  相似文献   

16.
The aims of the study were to establish the prevalence of high bone mass (HBM) in a cohort of Spanish postmenopausal women (BARCOS) and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD) variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600) displayed Z-scores in the HBM range (sum Z-score >4). While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found (p.Y74F), which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet 44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples, Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6. In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally, we present SNP genotyping and expression results that suggest additive effects of several genes for HBM.  相似文献   

17.

Objectives

To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models.

Methods

In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV) or geographic atrophy (GA) in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models.

Results

Three new genetic variants were significantly related to progression: rare variant R1210C in CFH (hazard ratio (HR) 2.5, 95% confidence interval [CI] 1.2–5.3, P = 0.01), and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1–3.5, P = 0.02) and RAD51B (HR 0.8, 95% CI 0.60–0.97, P = 0.03). The area under the curve statistic (AUC) was significantly higher for the 9 gene model (.884) vs the 0 gene model (.873), P = .01. AUC’s for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR) for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA.

Conclusions

Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes.  相似文献   

18.
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.  相似文献   

19.
The pro-carcinogenic effects of prostaglandin E2 (PGE2) in colonic mucosa are not only regulated by the rates between Cyclooxygenase-2 (COX-2) biosynthesis and 15-Hydroxyprostaglandin Dehydrogenase (15-PGDH)-dependent degradation but also the steady-state levels of PGE2 in extracellular microenvironment, maintained by key specific prostaglandin transporters, the Multidrug Resistance Protein (MRP4) (efflux carrier) and Prostaglandin Transporter (PGT) (influx carrier). To understand the contribution of genetic variability in genes coding for COX-2/15-PGDH/MRP4/PGT proteins in CRC development, we conducted a hospital-based case-control study involving 246 CRC patients and 480 cancer-free controls. A total of 51 tagSNPs were characterized using the Sequenom platform through multiplexed amplification followed by mass-spectrometric product separation or allelic discrimination using real-time PCR. Seven tagSNPs were implicated in CRC development: the rs689466 in COX-2 gene, the rs1346271 and rs1426945 in 15-PGDH, the rs6439448 and rs7616492 in PGT and rs1751051 and rs1751031 in MRP4 coding genes. Upon a stratified analysis a measurable gene-environment interaction was noticed between rs689466 and smoking habits, with individuals ever-smokers carriers of rs689466 GG homozygous genotype having a nearly 6-fold increased susceptibility for CRC onset (95%CI: 1.49–22.42, P = 0.011). Furthermore, the multifactor dimensionality reduction (MDR) analysis identified an overall four-factor best gene-gene interactive model, including the rs1426945, rs6439448, rs1751051 and rs1751031 polymorphisms. This model had the highest cross-validation consistency (10/10, P<0.0001) and an accuracy of 0.6957 and was further associated with a 5-fold increased risk for CRC development (95%CI: 3.89–7.02, P<0.0001). In conclusion, specific low penetrance genes in the pro-carcinogenic PGE2 pathway appear to modulate the genetic susceptibility for CRC development. A clearer understanding on CRC etiology through the identification of biomarkers of colorectal carcinogenesis might allow a better definition of risk models that are more likely to benefit from targeted preventive strategies to reduce CRC burden.  相似文献   

20.
WNT1-inducible-signaling pathway protein 2 (WISP2) is primarily expressed in mesenchymal stem cells, fibroblasts, and adipogenic precursor cells. It is both a secreted and cytosolic protein, the latter regulating precursor cell adipogenic commitment and PPARγ induction by BMP4. To examine the effect of the secreted protein, we expressed a full-length and a truncated, non-secreted WISP2 in NIH3T3 fibroblasts. Secreted, but not truncated WISP2 activated the canonical WNT pathway with increased β-catenin levels, its nuclear targeting phosphorylation, and LRP5/6 phosphorylation. It also inhibited Pparg activation and the effect of secreted WISP2 was reversed by the WNT antagonist DICKKOPF-1. Differentiated 3T3-L1 adipose cells were also target cells where extracellular WISP2 activated the canonical WNT pathway, inhibited Pparg and associated adipose genes and, similar to WNT3a, promoted partial dedifferentiation of the cells and the induction of a myofibroblast phenotype with activation of markers of fibrosis. Thus, WISP2 exerts dual actions in mesenchymal precursor cells; secreted WISP2 activates canonical WNT and maintains the cells in an undifferentiated state, whereas cytosolic WISP2 regulates adipogenic commitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号