首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The plant microbiome can affect host function in many ways and characterizing the ecological factors that shape endophytic (microbes living inside host plant tissues) community diversity is a key step in understanding the impacts of environmental change on these communities. Phylogenetic relatedness among members of a community offers a way of quantifying phylogenetic diversity of a community and can provide insight into the ecological factors that shape endophyte microbiomes. We examined the effects of experimental nutrient addition and herbivory exclusion on the phylogenetic diversity of foliar fungal endophyte communities of the grass species Andropogon gerardii at four sites in the Great Plains of the central USA. Using amplicon sequencing, we characterized the effects of fertilization and herbivory on fungal community phylogenetic diversity at spatial scales that spanned within‐host to between sites across the Great Plains. Despite increasing fungal diversity and richness, at larger spatial scales, fungal microbiomes were composed of taxa showing random phylogenetic associations. Phylogenetic diversity did not differ systematically when summed across increasing spatial scales from a few meters within plots to hundreds of kilometers among sites. We observed substantial shifts in composition across sites, demonstrating distinct but similarly diverse fungal communities were maintained within sites across the region. In contrast, at the scale of within leaves, fungal communities tended to be comprised of closely related taxa regardless of the environment, but there were no shifts in phylogenetic composition among communities. We also found that nutrient addition (fertilization) and herbivory have varying effects at different sites. These results suggest that the direction and magnitude of the outcomes of environmental modifications likely depend on the spatial scale considered, and can also be constrained by regional site differences in microbial diversity and composition.  相似文献   

2.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

3.
The focus of many fungal endophyte studies has been how plants benefit from endophyte infection. Few studies have investigated the role of the host plant as an environment in shaping endophyte community diversity and composition. The effects that different attributes of the host plant, that is, host genetic variation, host variation in resistance to the fungal pathogen Ustilago maydis and U. maydis infection, have on the fungal endophyte communities in maize (Zea mays) was examined. The internal transcribed spacer (ITS) region of the rDNA was sequenced to identify fungi and the endophyte communities were compared in six maize lines that varied in their resistance to U. maydis. It was found that host genetic variation, as determined by maize line, had significant effects on species richness, while the interactions between line and U. maydis infection and line and field plot had significant effects on endophyte community composition. However, the effects of maize line were not dependent on whether lines were resistant or susceptible to U. maydis. Almost 3000 clones obtained from 58 plants were sequenced to characterize the maize endophyte community. These results suggest that the endophyte community is shaped by complex interactions and factors, such as inoculum pool and microclimate, may be important.  相似文献   

4.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

5.
This study was conducted to explore fungal endophyte communities inhabiting a toxic weed (Stellera chamaejasme L.) from meadows of northwestern China. The effects of plant tissue and growth stage on endophyte assemblages were characterized. Endophytes were recovered from 50 % of the samples, with a total of 714 isolates. 41 operational taxonomical units (OTUs) were identified, consisting of 40 OTUs belonging primarily to Ascomycota and 1 OTU belonging to Basidiomycota. Pleosporales and Hypocreales were the orders contributing the most species to the endophytic assemblages. The total colonization frequency and species richness of endophytic fungi were higher in roots than in leaves and stems. In addition, for the plant tissues, the structure of fungal communities differed significantly by growth stages of leaf emergence and dormancy; for the plant growth stages, the structure of fungal communities differed significantly by plant tissues. This study demonstrates that S. chamaejasme serves as a reservoir for a wide variety of fungal endophytes that can be isolated from various plant tissues.  相似文献   

6.
Fungal endophytes in cool-season grasses may affect communities at multiple trophic levels. However, it is unclear whether community-scale endophyte effects arise due to the endophyte itself or as a result of unique, endophyte–host interactions. We used a long-term field experiment to test whether common-toxic (CT) and non-ergot alkaloid-producing (novel) endophytes in Schedonorus arundinaceus (tall fescue) forage cultivars consistently affect communities across tall fescue hosts. Tilled plots (2 × 2 m; Guelph, ON) were seeded with Georgia 5 and Jesup cultivars containing either the CT or AR542 (novel) endophyte and allowed to be re-colonized by plant species from the local propagule pool. Non-seeded control plots were included to assess effects of seeding the non-native grass. We assessed plant, invertebrate, soil moisture, and soil nutrient responses to the endophyte–cultivar treatments after four growing seasons. Seeding tall fescue affected plant species abundances, but not richness, and did not consistently alter soil moisture and nutrient pools. Endophyte identity in the tall fescue cultivars affected the communities, but effects were not consistent between cultivars. Within Georgia 5, the AR542 endophyte reduced tall fescue abundance and altered the invertebrate community relative to CT plots. Within Jesup, the AR542 endophyte reduced species evenness and decreased soil moisture during dry periods relative to CT plots. Endophyte effects were not consistent between cultivars, and it is probable that the community-scale effects of endophyte infection in tall fescue cultivars arise due to unique interactions between cultivar and endophyte.  相似文献   

7.
Seed limitation can narrow down the number of coexisting plant species, limit plant community productivity, and also constrain community responses to changing environmental and biotic conditions. In a 10-year full-factorial experiment of seed addition, fertilisation, warming and herbivore exclusion, we tested how seed addition alters community richness and biomass, and how its effects depend on seed origin and biotic and abiotic context. We found that seed addition increased species richness in all treatments, and increased plant community biomass depending on nutrient addition and warming. Novel species, originally absent from the communities, increased biomass the most, especially in fertilised plots and in the absence of herbivores, while adding seeds of local species did not affect biomass. Our results show that seed limitation constrains both community richness and biomass, and highlight the importance of considering trophic interactions and soil nutrients when assessing novel species immigrations and their effects on community biomass.  相似文献   

8.
The effects of herbivores and their interactions with nutrient availability on primary production and plant community composition in grassland systems is expected to vary with herbivore type. We examined the effects of invertebrate and small vertebrate herbivores and their interactions with nutrient availability on grassland plant community composition and aboveground biomass in a tallgrass prairie ecosystem. The abundance of forbs relative to grasses increased with invertebrate herbivore removals. This increase in forb abundance led to a shift in community composition, where invertebrate removals resulted in greater plant species evenness as well as a divergence in composition among plots. In contrast, vertebrate herbivore removals did not affect plant community composition or aboveground biomass. Nutrient additions alone resulted in a decrease in plant species richness and an increase in the abundance of the dominant grass, but the dominant grass species did not greatly increase in abundance when nutrient additions were combined with invertebrate removals. Rather, several subdominant forbs came to dominate the plant community. Additionally, the combined nutrient addition and invertebrate herbivore removal treatment increased forb biomass, suggesting that invertebrate herbivores suppress the responses of forb species to chronic nutrient additions. Overall, the release of forbs from invertebrate herbivore pressure may result in large shifts in species composition, with consequences for aboveground biomass and forage quality due to altered grass:forb ratios in grassland systems.  相似文献   

9.
Plant/soil microbial community feedback can have important consequences for species composition of both the plant and soil microbial communities, however, changes in nutrient availability may alter plant reliance on mycorrhizal fungi. In this research, we tested whether plant/soil community feedback occurs and if increased soil fertility altered the plant/soil community interactions. In two greenhouse experiments we assessed plant and AM fungal performance in response to different soils (and their microbial communities), collected from under three co-occurring plants in serpentine grasslands, and nutrient treatments. The first experiment consisted of two plant species (Andropogon gerardii, Sorghastrum nutans), their soil communities, and three nutrient treatments (control, calcium, N-P-K), while the second experiment used three plant species (first two and Schizachyrium scoparium), their soil communities collected from a different site, and two nutrient treatments (control, N-P-K). Plant/soil community feedback was observed with two of the three species and was significantly affected by nutrient enrichment. Negative Sorghastrum/soil feedback was removed with the addition of N-P-K fertilizer at both sites. Andropogon/soil feedback varied between sites and nutrient treatments, while no differential Schizachyrium growth relative to soil community was observed. Addition of N-P-K fertilizer to the nutrient poor serpentine soils increased plant biomass production and affected plant/soil community interactions. Calcium addition did not affect plant biomass, but was associated with significant increases in fungal colonization regardless of plant species or soil community. Our results indicate that nutrient enrichment affected plant/soil community feedback, which has the potential to affect plant and soil community structure.  相似文献   

10.
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High‐throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long‐term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.  相似文献   

11.
Rudgers JA  Clay K 《Ecology letters》2008,11(8):831-840
Ecological theory holds that competition and predation are the most important biotic forces affecting the composition of communities. Here, we expand this framework by demonstrating that mutualism can fundamentally alter community and food web structure. In large, replicated field plots, we manipulated the mutualism between a dominant plant ( Lolium arundinaceum ) and symbiotic fungal endophyte ( Neotyphodium coenophialum ). The presence of the mutualism reduced arthropod abundance up to 70%, reduced arthropod diversity nearly 20%, shifted arthropod species composition relative to endophyte-free plots and suppressed the biomass and richness of other plant species in the community. Herbivorous arthropods were more strongly affected than carnivores, and for both herbivores and carnivores, effects of the mutualism appeared to propagate indirectly via organisms occurring more basally in the food web. The influence of the mutualism was as great or greater than previously documented effects of competition and predation on arthropod communities. Our work demonstrates that a keystone mutualism can significantly reduce arthropod biodiversity at a broad community scale.  相似文献   

12.
Exploring the link between above‐ and belowground biodiversity has been a major theme of recent ecological research, due in large part to the increasingly well‐recognized role that soil microorganisms play in driving plant community processes. In this study, we utilized a field‐based tree experiment in Minnesota, USA, to assess the effect of changes in plant species richness and phylogenetic diversity on the richness and composition of both ectomycorrhizal and saprotrophic fungal communities. We found that ectomycorrhizal fungal species richness was significantly positively influenced by increasing plant phylogenetic diversity, while saprotrophic fungal species richness was significantly affected by plant leaf nitrogen content, specific root length and standing biomass. The increasing ectomycorrhizal fungal richness associated with increasing plant phylogenetic diversity was driven by the combined presence of ectomycorrhizal fungal specialists in plots with both gymnosperm and angiosperm hosts. Although the species composition of both the ectomycorrhizal and saprotrophic fungal communities changed significantly in response to changes in plant species composition, the effect was much greater for ectomycorrhizal fungi. In addition, ectomycorrhizal but not saprotrophic fungal species composition was significantly influenced by both plant phylum (angiosperm, gymnosperm, both) and origin (Europe, America, both). The phylum effect was caused by differences in ectomycorrhizal fungal community composition, while the origin effect was attributable to differences in community heterogeneity. Taken together, this study emphasizes that plant‐associated effects on soil fungal communities are largely guild‐specific and provides a mechanistic basis for the positive link between plant phylogenetic diversity and ectomycorrhizal fungal richness.  相似文献   

13.
The fungal community composition, size and several physico-chemical properties were individually investigated in ten macrophyte rhizospheric substrates using nested PCR-denaturing gradient gel electrophoresis and soil chemical methods. Results indicated that both Dothideomycetes and Sordariomycetes were dominant fungi in macrophyte rhizospheric substrates, and denitrifying fungi (Fusarium graminearum) was found in nine of ten macrophyte rhizospheres. Fungal Shannon-Wiener diversity index (H) and richness (S) in Thalia dealbata, Typha latifolia, Iris hexagona and Hemerocallis aurantiaca rhizospheres were higher than those in other six rhizospheres. Fungal number and biomass were 1.91 × 103 CFUs g?1 dw and 1.53 μg ergosterol g?1 dw in Iris pseudacor rhizosphere, and were greater than in other nine rhizospheres. The correlation analysis showed that fungal number and biomass significantly and positively correlated to total soil phosphorus, while fungal H and S were significantly and negatively correlated to total organic carbon. The principal components analysis (PCA) showed that the fungal community significantly divided ten macrophyte rhizospheres into four groups, showing the significant difference of fungal communities among ten rhizospheric substrates. The current study revealed for the first time the importance of rhizospheric fungal community in distinguishing macrophyte rhizospheres, thus will undoubtedly widen our insight into fungal communities in aquatic rhizospheres.  相似文献   

14.
以青藏高原亚高寒草甸为研究对象,采用随机区组设计,通过连续4a添加N、P,研究了不同施肥(N、P、N+P)处理下群落物种丰富度、种多度分布模式以及群落相似性的变化特征。结果显示:(1)N、N+P连续添加4年后,随N素添加水平的增加,草地植物群落物种丰富度逐渐降低(P0.001);种多度分布曲线的斜率逐渐增大;N+P添加处理对植物群落物种丰富度和种多度分布(SAD)曲线的影响较单独N添加处理更显著,如N15P15处理下群落物种丰富度的降幅最大,达对照群落的65.5%;(2)单一N或N+P处理中,不同添加量间的植被组成趋异,而相同添加量的植被组成趋同(stress level=0.152);(3)N、N+P添加引起刷状根的丛生型禾本科植物逐渐在植物群落中占据优势;(4)P素添加对群落物种丰富度、种多度分布曲线、群落相似性和不同生长型组成及比例的影响不显著;(5)植物生长型特征和N/P添加处理可解释56.97%植物群落的物种多度分布特征。这些结果表明:亚高寒草甸地区N添加引起植物群落组成的重新排序、优势种的变化、SAD曲线逐渐陡峭,群落的相似性增加;N富集时,添加P素会增加N素的利用效率,且群落结构受N、P供应水平的影响。  相似文献   

15.
Current environmental change predictions forecast intensified drought conditions. It is becoming increasingly evident that plant communities are sensitive to drought and that soil-inhabiting microbial communities vary along precipitation gradients. However, the drought sensitivity of microbial communities in general and that of soil fungi in particular remains unclear, even though understanding their responses to adverse environmental conditions is vital for better understanding of ecosystem service provisioning. We sampled soils at two sites with established experiments that imposed extreme, chronic drought to assess fungal community responses. We analyzed fungal communities using both culture-dependent and -independent tools and MiSeq-sequenced communities from colony forming units (CFU-PCR) on a drought simulating medium and from environmental DNA (ePCR), to compare the conclusions derived from these two methods. Our data from the two approaches consistently indicate that the composition of fungal communities is not affected by the drought treatment, whereas – based on the CFU-PCR but not ePCR data – their richness and diversity increased under drought conditions at the more mesic of the two sites. Further, based on the direct comparisons of CFU-PCR and ePCR, we estimate that more than 10% of the fungal community and more than 20% of the ascomycetes were culturable. We conclude that although recent research indicates that plant and bacterial communities respond to drought, fungal community responses are more variable, particularly in experiments that impose chronic drought under field conditions.  相似文献   

16.
Fungi play a key role in soil–plant interactions, nutrient cycling and carbon flow and are essential for the functioning of arctic terrestrial ecosystems. Some studies have shown that the composition of fungal communities is highly sensitive to variations in environmental conditions, but little is known about how the conditions control the role of fungal communities (i.e., their ecosystem function). We used DNA metabarcoding to compare taxonomic and functional composition of fungal communities along a gradient of environmental severity in Northeast Greenland. We analysed soil samples from fell fields, heaths and snowbeds, three habitats with very contrasting abiotic conditions. We also assessed within‐habitat differences by comparing three widespread microhabitats (patches with high cover of Dryas, Salix, or bare soil). The data suggest that, along the sampled mesotopographic gradient, the greatest differences in both fungal richness and community composition are observed amongst habitats, while the effect of microhabitat is weaker, although still significant. Furthermore, we found that richness and community composition of fungi are shaped primarily by abiotic factors and to a lesser, though still significant extent, by floristic composition. Along this mesotopographic gradient, environmental severity is strongly correlated with richness in all fungal functional groups: positively in saprotrophic, pathogenic and lichenised fungi, and negatively in ectomycorrhizal and root endophytic fungi. Our results suggest complex interactions amongst functional groups, possibly due to nutrient limitation or competitive exclusion, with potential implications on soil carbon stocks. These findings are important in the light of the environmental changes predicted for the Arctic.  相似文献   

17.
Endophytes are ubiquitous plant‐associated microbes and although they have the potential to alter the decomposition of infected leaf litter, this has not been well‐studied. The endophyte Rhytisma punctatum infects the leaves of Acer macrophyllum (bigleaf maple), causing the appearance of black ‘tar spots’ that persist in senesced leaves. Other foliar fungi also cause visible damage in healthy tissues of this host plant system including an unidentified bullseye‐shaped lesion, common in western Washington. Using three treatments of endophyte infection status in leaf tissue (R. punctatum‐infected, bullseye‐infected, lesion‐free), leaf litter discs were submerged in a third‐order temperate stream using mesh litter bags and harvested periodically over two months to determine the effects of litter treatment and incubation time on litter mass loss, fungal sporulation, and microbial community colonization. Litter containing symptomatic endophyte infections (Rhytisma or bullseye) had reduced sporulation of aquatic hyphomycetes, but decomposed significantly faster than lesion‐free or bullseye‐infected litter. Using amplicon‐based sequencing, we found a significant difference in bacterial communities colonizing Rhytisma‐infected and bullseye‐infected leaf litter, a significant difference in fungal communities colonizing Rhytisma‐infected leaf litter compared to the two other treatments, and a change in both community structure and relative abundances of bacterial and fungal taxa throughout the study period. Indicator Species Analysis clarified the drivers of these community shifts at the genus level. Our results show that endophyte‐associated, in‐stream sporulation and microbial community effects are observable within one species of leaf litter.  相似文献   

18.
19.
如何通过合理的利用方式提高高寒草地管理水平,实现其可持续利用一直是草地生态学领域的研究热点。为明确不同放牧家畜组合下高寒草地植物群落关键种的演替规律及其驱动因素,基于中等放牧强度设置了不同放牧家畜组合放牧样地(牦牛单牧、藏羊单牧、牦牛藏羊1 : 2混牧、牦牛藏羊1 : 4混牧、牦牛藏羊1 : 6混牧)以及围封样地,并在连续放牧处理7年后系统分析了不同放牧家畜组合下植物群落特征与土壤理化性质变化,以期确定最优放牧组合。结果表明:(1)不同放牧家畜组合均会显著降低高寒草地植物盖度,但对其物种丰富度与多样性指数的影响并不显著。(2)牦牛藏羊1 : 2混牧下植物群落特征与禁牧处理下植物群落特征较为相似,且牦牛藏羊1 : 2混牧下的植物群落稳定性最强、组织水平最高。(3)牦牛单牧与1 : 2混牧下关键种为矮生嵩草;藏羊单牧下关键种为天山针茅;1 : 4混牧下关键种为星毛委陵菜;1 : 6混牧与围封下关键种为赖草。(4)围封能够显著降低土壤容重,藏羊单牧则会显著增加土壤容重与土壤速效氮、磷含量。(5)土壤速效氮、容重与含水量是驱动不同放牧家畜组合下植物群落关键种演替的重要理化因子。综上所述,中等放牧强度下,牦牛藏羊1 : 2混牧是青藏高原高寒草地较为理想的利用方式。此外,相较于单纯增加草地物种丰富度或多样性,建立植物群落物种之间的有效关联是提高青藏高原高寒草地管理水平的另一关键途径。  相似文献   

20.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号