首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
As a first step in determining the genetic control of experimental autoimmune myasthenia gravis in mice, we tested the proliferative responses of lymph node cells to torpedo acetylcholine receptors (TAR). Studies with congenic and recombinant inbred strains of mice revealed that T-cell responses to TAR are controlled by an H-2 linked Ir gene, mapping in the I-A subregion of mouse major histocompatibility complex.  相似文献   

3.
Gene(s) at the I-A subregion of the murine major histocompatibility complex influence susceptibility to experimental autoimmune myasthenia gravis. C57Bl/6 mice immunized with acetylcholine receptors (AChR) in complete Freund's adjuvant demonstrated cellular and humoral immune responses to AChR. They developed muscle weakness characteristic of myasthenia gravis and demonstrated a reduction in the muscle AChR content. The kinetics of AChR-specific lymphocyte proliferation generally correlate with anti-AChR antibody response. AChR-specific lymphocyte proliferation was also observed in C57Bl/6 splenocytes after secondary immunization with AChR. The in vitro cellular reactivity to AChR in experimental autoimmune myasthenia gravis (EAMG) mice (C57Bl/6) was suppressed by monoclonal anti-I-Ab antibodies directed against private (Ia20) or public (Ia8) specificities, suggesting a critical role for these Ia determinants in the cellular immune response to AChR in murine EAMG.  相似文献   

4.
Autoimmunity to acetylcholine receptors in myasthenia gravis   总被引:1,自引:0,他引:1  
  相似文献   

5.
IgG obtained from patients with myasthenia gravis block the specific binding of the muscarinic antagonists (3H)-N-methyl-4-piperidyl benzilate (4NMPB) and (3H)-Quinuclidinyl benzilate to rat brain muscarinic acetylcholine receptors. IgG obtained from healthy controls have a much smaller effect. The inhibitory effect of the myasthenic IgG increases linearly with immunoglobulin concentration and has no effect on the affinity of the muscarinic receptors towards (3H)-4NMPB (KD = 0.7 ± 0.1 nM). This implies that the inhibition is probably due to the blocking of some of the muscarinic receptors by the myasthenic IgG, and not due to alteration in affinity of all the receptors. it remains to be established whether the presence of antimuscarinic receptor activity in the serum of myasthenic patients is of importance in the pathophysiology and diagnosis of myasthenia gravis.  相似文献   

6.
The degradation of acetylcholine receptor observed in denervated and innervated normal rat diaphragms in organ culture is stimulated by exogenous antireceptor serum. In this paper we demonstrate that diaphragms from rats with experimental autoimmune myasthenia gravis contain reduced amounts of acetylcholine receptor. Acetylcholine receptor from myasthenic, but not from normal, rats has antibody bound to it and is degraded at an accelerated rate. We conclude that in the chronic phase of experimental autoimmune myasthenia gravis increased acetylcholine receptor degradation can be accounted for by a mechanism involving antigenic modulation, and that such a process can contribute to the clinical symptoms of impaired neuromuscular transmission.  相似文献   

7.
8.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are T cell-dependent diseases mediated by antibodies against acetylcholine receptor (AChR) on skeletal muscle. Most of the antibodies are directed toward conformation-dependent epitopes on the AChR, whereas T cells recognize denatured AChR. In search of T cell epitopes in EAMG, we tested 24 synthetic peptides covering 62% of the alpha-subunit sequence of Torpedo californica electric organ AChR in the T cell proliferation assay with lymph node cells from rats immunized with AChR. In Lewis rats, 2 of these peptides, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90, strongly stimulated T cells and, of these, [Tyr 100]alpha 100-116 was much more potent; 4 other peptides were weakly mitogenic and 18 were ineffective. None of the 24 synthetic peptides alone stimulated anti-AChR production and, when added to cultures along with AChR, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90 suppressed antibody production. Of twelve cloned T cell lines specific to AChR, 4 responded to [Tyr 100]alpha 100-116, indicating the importance of the epitope in alpha 101-116 in Lewis rats. In three other strains of rats whose responses to AChR and its subunits were similar to those in the Lewis rat, neither [Tyr 100]alpha 100-116 nor [Gly 89, Tyr 90]alpha 73-90 was stimulatory. Instead, completely different sets of peptides stimulated their T cells. When peptides were used as immunogens, each strain (except Lewis rats) responded only to the peptides that stimulated AChR-immune T cells from the same strain. Genetically restricted T cell recognition of AChR peptides in rats suggests that T cells from MG patients with different major histocompatibility haplotypes may recognize different AChR peptides.  相似文献   

9.
Dendritic cells (DC) are usually regarded as antigen-presenting cells involved in T cell activation, but DC also directly and indirectly affect B cell activation, antibody synthesis, and isotype switch. In the present study, bone marrow (BM)-derived DC from healthy rats were pulsed in vitro with acetylcholine receptor (AChR) and injected subcutaneously into healthy Lewis rats. No clinical signs of the first phase of experimental autoimmune myasthenia gravis (EAMG) were observed during 3 weeks of observation. Upon immunization with AChR and complete Freund's adjuvant, the rats that had received AChR-pulsed DC did not develop clinical EAMG. This tolerance of rats injected with AChR-pulsed DC was associated with reduced expression of B cell-activating factor (BAFF) and by reduced numbers of B cells among splenic mononuclear cells (MNC) compared to rats injected with medium or unpulsed DC. Anti-AChR IgG antibody-secreting cells were decreased, while the ratio of IgG1:IgG2b isotypes was enhanced in rats treated with AChR-pulsed DC compared to control EAMG rats. These results demonstrate that AChR-pulsed DC induce peripheral tolerance to EAMG by possibly inhibiting the expression of BAFF and production of anti-AChR antibodies, providing a possible potential for immunotherapy of antibody-mediated autoimmune diseases.  相似文献   

10.
11.
Conditions are described for an assay that allows the percent inhibition of α-bungarotoxin binding to acetylcholine receptors by antisera and monovalent antigen-binding fragments of antibody molecules (Fab) to be determined. Anti-Torpedo californica acetylcholine-receptor antisera, prepared in New Zealand White rabbits and Lewis rats, were tested for the ability to inhibit [125I]-α-bungarotoxin binding to membrane-associated and detergent-solubilized T californica acetylcholine receptors. Similar inhibition studies were performed using rabbit antisera and antigen-binding fragments prepared against each of the four acetylcholine receptor subunits. Antisera and antigen-binding fragments prepared against intact receptor could inhibit a maximum of 50% of the α-bungarotoxin binding to solubilized receptor. The results using monovalent antigen-binding fragments indicated that the inhibition was not due to antibody-mediated aggregation of receptor molecules. Rabbits and rats immunized with receptor denatured by sodium dodecyl sulfate all produced antisera that could bind to nondenatured receptor, but none of these animals developed experimental autoimmune myasthenia gravis. These results suggest that the antigenic determinants present on acetylcholine receptors responsible for induction of experimental auto-immune myasthenia gravis are lost with sodium dodecyl sulfate denaturation. A strong correlation was also observed between the presence of experimental autoimmune myasthenia gravis in rats and rabbits and the ability of the antisera from these animals to inhibit 50% of α-bungarotoxin binding to solubilized acetylcholine receptors.  相似文献   

12.
Myasthenia gravis (MG) is an organ-specific autoimmune disease caused in most cases by autoantibodies against the nicotinic acetylcholine receptor (AChR). It is now well documented that many autoimmune diseases, including MG, are more prevalent in women than in men, and that fluctuations in disease severity occur during pregnancy. These observations raise the question of the potential role of sex hormones, such as estrogens, as mediators of sex differences in autoimmunity. In the present study, we have analyzed the effect of 17beta-estradiol (E2) on the pathogenesis of experimental autoimmune myasthenia gravis (EAMG), an animal model of MG. We show that treatment with E2 before Ag priming is necessary and sufficient to promote AChR-specific Th1 cell expansion in vivo. This time-limited exposure to E2 enhances the production of anti-AChR IgG2a(b) (specific for b allotype; e.g., B6) and IgG2b, but not IgG1, and significantly increases the severity of EAMG in mice. Interestingly, the E2-mediated augmentation in AChR-specific Th1 response correlates with an enhanced production of IL-12 by splenic APCs through the recruitment of CD8alpha(+) dendritic cells. These data provide the first evidence that estrogen enhances EAMG, and sheds some light on the role of sex hormones in immune responses and susceptibility to autoimmune disease in women.  相似文献   

13.
Genetically related susceptibility for experimental autoimmune myasthenia gravis was investigated in nine inbred strains of rats immunized with heterologous acetylcholine (AChR) from Torpedo californica. Wistar Munich and Fischer strain animals consistently developed severe, fatal disease associated with impaired neuromuscular transmission and increased sensitivity to low doses of curare. A lower incidence of disease was induced in Wistar Kyoto, ACI, Brown Norway, Buffalo, and Lewis strain animals. In contrast, Wistar Furth and Copenhagen strain animals were resistant to experimental autoimmune myasthenia gravis, electrophysiologic responses were normal, and animals were insensitive to curare. All strains of animals manifested equivalent amounts of serum antibody to AChR and total muscle AChR was reduced to the same extent in both resistant and susceptible animals. In contrast, the amount of antibody-bound AChR was greater in susceptible Wistar Munich animals than the amount observed in resistant Wistar Furth animals. These data suggest that impaired neurotransmission is correlated with the extent of antibody binding to the AChR. The discordance in the amount of antibody bound to the AChR of resistant and susceptible animals may result from heritable differences in antibody properties. Cross-breeding experiments with Wistar Munich and Wistar Furth animals show that resistance for development of experimental autoimmune myasthenia gravis is recessive and indicate that disease susceptibility is linked to one or two genetic loci.  相似文献   

14.
To determine whether the chronic presence of antibody to acetylcholine receptor (AChR) can account for the neuromuscular abnormalities in myasthenia gravis (MG), rats injected repeatedly with monoclonal antibody (mAb) to AChR were compared with those injected with control mAb. In a previous report, those receiving anti-AChR mAb, studied ultrastructurally, had grossly simplified endplates when compared with normal controls. In this report, animals injected once or chronically for 9 to 12 wk had reduced content of muscle AChR. The chronically injected animals also had diminished miniature endplate potential amplitudes, but to a lesser extent than the reduction in AChR content. These studies establish the pathogenetic role of antibody to AChR in the induction of the ultrastructural, biochemical, and electrophysiologic hallmarks of MG.  相似文献   

15.
Abs to acetylcholine receptor (AChR) and complement are the major constituents of pathogenic events causing neuromuscular junction destruction in both myasthenia gravis (MG) and experimental autoimmune MG (EAMG). To analyze the differential roles of the classical vs alternative complement pathways in EAMG induction, we immunized C3(-/-), C4(-/-), C3(+/-), and C4(+/-) mice and their control littermates (C3(+/+) and C4(+/+) mice) with AChR in CFA. C3(-/-) and C4(-/-) mice were resistant to disease, whereas mice heterozygous for C3 or C4 displayed intermediate susceptibility. Although C3(-/-) and C4(-/-) mice had anti-AChR Abs in their sera, anti-AChR IgG production by C3(-/-) mice was significantly suppressed. Both C3(-/-) and C4(-/-) mice had reduced levels of B cells and increased expression of apoptotis inducers (Fas ligand, CD69) and apoptotic cells in lymph nodes. Immunofluorescence studies showed that the neuromuscular junction of C3(-/-) and C4(-/-) mice lacked C3 or membrane attack complex deposits, despite having IgG deposits, thus providing in vivo evidence for the incapacity of anti-AChR IgGs to induce full-blown EAMG without the aid of complements. The data provide the first direct genetic evidence for the classical complement pathway in the induction of EAMG induced by AChR immunization. Accordingly, severe MG and other Ab- and complement-mediated diseases could be effectively treated by inhibiting C4, thus leaving the alternative complement pathway intact.  相似文献   

16.
Human autoreactive helper T lymphocytes with specificity for acetylcholine receptor (AChR) were isolated from three HLA-DR3-positive patients who had myasthenia gravis (MG), an autoimmune disease known to be associated with HLA-DR3 in the North European population. The antigen-specific T cells were evaluated for genetic restriction. Antigen presentation studies were performed with mitomycin C-treated accessory cells from a panel of HLA-typed unrelated donors. AChR-induced proliferation of the autoreactive T cells was maximal in the presence of autologous or HLA-DR-compatible antigen-presenting cells. In two DR-heterozygous patients both parental DR specificities served as restriction elements of the polyclonal AChR-reactive T cell populations. Preferential restriction to HLA-DR3 was observed in one patient, but this was also seen with PPD-specific T cells from the same donor. A series of monoclonal antibodies against HLA class II molecules was used for inhibition experiments. The inhibitory effects of the antibodies were not due to unspecific toxicity and could be observed after separate treatment of the antigen-presenting cells but not of the responding T cells. Several monoclonal antibodies against monomorphic HLA-DR determinants (DA 231, MAS 53, MAS 54, L243, OKIa1) had pronounced inhibitory effects. Anti-HLA-DQ(DC) monoclonal antibodies (Leu-10; TU 22) had only mild or no inhibitory effects in two patients but significantly inhibited AChR-specific T cells in one patient. A monoclonal antibody against HLA-DR3 (antibody 16.23) was not or was only weakly inhibitory in the DR3-positive patients, although it bound to autologous T line cells and B cells by indirect immunofluorescence. In one patient it was possible to compare the inhibition patterns of AChR-specific and PPD-specific T cells. Most of the monoclonal antibodies affected AChR- and PPD-specific T cells to a similar extent, but three antibodies (TU 22, 36, 39) inhibited PPD-specific T cells more than AChR-specific T cells, indicating the possibility of differential restriction of antigen- and autoantigen-specific T cells. It is suggested that the in vitro system described here may be helpful for the evaluation of anti-HLA class II antibodies as potential immunotherapeutic reagents.  相似文献   

17.
The H-2 restriction of T helper cells from thymus-reconstituted nude mice was examined. Hybrid athymic mice were bred from BALB/c.nu and C57BL/6.nu parental strains and reconstituted with fetal thymus tissue from either parental strain. T helper cells from these mice, immunized to SRBC, were restricted to cooperation with B cells of the thymic H-2 haplotype. These T helper cells were shown to have originated from the F1 host by functional sensitivity to antisera and complement. The H-2 restriction of thymus-reconstituted F1 nude mice was further investigated by examining expression of the Ir-collagen phenotype. Results showed that the level of antibody produced in response to type I calf collagen in thymus chimeras correlates with the H-2 haplotype (high responder or low responder) of the reconstituting thymus. These experiments indicate that the thymus environment of T cell maturation influences both the H-2 restriction and Ir-phenotype of a responding immune system.  相似文献   

18.
We have recently described an algorithm to design, among others, peptides with complementarity contour to autoimmune epitopes. Immunization with one such peptide resulted in a monoclonal antibody (mAb), termed CTCR8, that specifically recognized Vbeta15 containing TCR on acetylcholine receptor (AChR) alpha-chain residue 100-116-specific T cells. CTCR8 was found to label the cell surface of AChR100-116-specific T cell lines and clones, immunoprecipitate the TCR from such cells, and block their proliferative responses to AChRalpha100-116. In the present report, we have found that there is a marked reduction in IFN-gamma and no effect on IL-10 production in a CTCR8-treated AChRalpha100-116-specific T cell line. Interestingly, when AChR100-116-primed, primary T cells were stimulated with peptide and treated with CTCR8, there was once again inhibition of IFN-gamma but also marked stimulation of IL-10 production. The change in the Th1/Th2 cytokine profile was paralleled by a reduction in AChR-specific IgG2a and IgM with no effect on IgG1. Remarkably, the most profoundly inhibited Ab population was that which causes experimental autoimmune myasthenia gravis (EAMG) by reaction with the main immunogenic region (alpha61-76) of the AChR. Based on these results, CTCR8 was tested for prophylactic and therapeutic effects in EAMG. EAMG induced by immunization with purified native Torpedo AChR was both inhibited and reversed by CTCR8. These findings suggest a means to produce therapeutic mAb for the treatment of autoimmune diseases.  相似文献   

19.
Dendritic cells (DC) are highly specialized antigen presenting cells that play critical roles as instigators and regulators of immune responses including B cell function, antibody synthesis and isotype switch. In this study, we compared immunotherapeutic effect of IL-10-treated DC (IL-10-DC) via both intraperitoneal (i.p.) and subcutaneous (s.c.) delivery in rats with incipient experimental autoimmune myasthenia gravis (EAMG). Spleen DC were isolated from onset of EAMG on day 39 post-immunization, exposed in vitro to IL-10, and then injected into incipient EAMG at dose of 1 x 10(6) cells/rat on day 5 after immunization. Intraperitoneal administration of IL-10-DC suppressed clinical scores, anti-acetylcholine receptors (AChR) antibody secreting cells, antigen-specific IL-10/IFN-gamma production and T cell proliferation compared to control EAMG rats. Importantly, IL-10-DC, if given by s.c. route, failed to ameliorate clinical sign of EAMG. Simultaneously, T cell proliferation, anti-AChR antibody secreting cells and IL-10/IFN-gamma production had no alteration, as compared to control EAMG rats. Both in vitro and in vivo experiments showed that treatment of IL-10 inhibited the migration of DC toward MIP-3beta and lymph node, indicating that in vitro manipulation of DC with IL-10 alters the migration of DC that influences the therapeutic effect in the treatment of autoimmune diseases. In MG patients, neither the improvement of clinical symptom nor the alteration of immunological parameter was observed through s.c. delivery of IL-10-DC, suggesting the limitation of IL-10-DC in the treatment of MG patients.  相似文献   

20.
In myasthenia gravis (MG), the neuromuscular transmission is impaired by antibodies (Abs) specific for muscle acetylcholine receptor (AChR). Anti-AChR Abs can be detected in the serum of MG patients, although their levels do not correlate with disease severity. In this study, we developed a flow cytometric assay for the detection of peripheral blood AChR-specific B cells to characterize B cell phenotypes associated with experimental autoimmune myasthenia gravis (EAMG). Alexa-conjugated AChR was used as a probe for AChR-specific B cells (B220+Ig+). Mice with EAMG had significantly elevated frequencies of AChR-specific IgG2+ and IgM+ B cells. While the frequencies of IgG2+ B cells and plasma anti-AChR IgG2 levels significantly correlated with the clinical grades of EAMG, the frequencies of IgM+ B cells and plasma anti-AChR IgM levels did not. These results indicate that the frequency of AChR-specific and IgG1+ (mouse IgG2 equivalent) peripheral blood B cells and anti-AChR IgG1 levels could be potential biomarkers for MG disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号