共查询到20条相似文献,搜索用时 0 毫秒
1.
T A Walsh M K Johnson D Barber A J Thomson C Greenwood 《Journal of inorganic biochemistry》1981,14(1):15-31
Heme d1 has been extracted from Pseudomonas nitrite reductase. Imidazole, cyanide, and chloride-ferroheme, and CO, NO, cyanide, imidazole, and pyridine-ferroheme complexes have been prepared for study by UV/vis spectroscopy, and in some cass by epr and low-temperature mcd as well. Iron determinations have been carried out to assess extinction coefficients. Absorption spectra were used to monitor the transition of chloride-ferriheme d1 to an alkaline form of ferriheme d1 and a pka of 6.5 was determined for the process. The epr spectrum of chloride-ferriheme possessed the characteristic g = 6 signal of high spin (S = 5/2) iron, but the alkaline-ferriheme form gave no detectable epr signals. Electron paramagnetic resonance spectra were also obtained for cyanide and imidazole-ferriheme d1 and for NO-ferroheme d1. The imidazole complex gave signals that were very weak in comparison with the cyanide complex, but mcd measurements of imidazole-ferriheme d1 were consistent with it being a low-spin (S = 1/2) system. The epr signals of NO-ferroheme d1 were similar to those of the corresponding holo-enzyme complex. Reduction of alkaline-ferriheme d1 was found to be affected by the presence of oxygen, but under N2 give the same result with ascorbate and dithionite. Autoreduction of alkaline-ferriheme d1 was observed when placed under CO, and NO, atmospheres, or when treated with pyridine. 相似文献
2.
The copper-containing nitrite reductase from Alcaligenes faecalis S-6 was found to catalyze the oxidation of nitric oxide to nitrite, the reverse of its physiological reaction. Thermodynamic and kinetic constants with the physiological electron donor pseudoazurin were determined for both directions of the catalyzed reaction in the pH range of 6-8. For this, nitric oxide was monitored by a Clark-type electrode, and the redox state of pseudoazurin was measured by optical spectroscopy. The equilibrium constant (K(eq)) depends on the reduction potentials of pseudoazurin and nitrite/nitric oxide, both of which vary with pH. Above pH 6.2 the formation of NiR substrates (nitrite and reduced pseudoazurin) is favored over the products (NO and oxidized pseudoazurin). At pH 8 the K(eq) amounts to 10(3). The results show that dissimilatory nitrite reductases catalyze an unfavorable reaction at physiological pH (pH = 7-8). Consequently, nitrous oxide production by copper-containing nitrite reductases is unlikely to occur in vivo with a native electron donor. With increasing pH, the rate and specificity constant of the forward reaction decrease and become lower than the rate of the reverse reaction. The opposite occurs for the rate of the reverse reaction; thus the catalytic bias for nitrite reduction decreases. At pH 6.0 the k(cat) for nitrite reduction was determined to be 1.5 x 10(3) s(-1), and at pH 8 the rate of the reverse reaction is 125 s(-1). 相似文献
3.
The structural and catalytic properties of Pseudomonas aeruginosa cd1 nitrite reductase, a key enzyme in bacterial denitrification, are reviewed in this paper. The mechanism of reduction of nitrite to NO is discussed in detail with special attention to the structural interpretation of function. The ability to stabilize negatively charged molecules, such as the substrate (nitrite) and other ligands (hydroxide and cyanide), is a key feature of catalysis in cd1NIRs. The positive potential in the active site is largely due to the presence of the two conserved distal histidines, which are involved in both substrate binding and product release. 相似文献
4.
Nitrite reductases are redox enzymes catalysing the one electron reduction of nitrite to nitrogen monoxide (NO) within the bacterial denitrification process. We have cloned the gene for cd(1) nitrite reductase (Pa-nirS) from Pseudomonas aeruginosa into the NiRS(-) strain MK202 of Pseudomonas stutzeri and expressed the enzyme under denitrifying conditions. In the MK202 strain, denitrification is abolished by the disruption of the endogenous nitrite reductase gene; thus, cells can be grown only in the presence of oxygen. After complementation with Pa-nirS gene, cells supplemented with nitrate can be grown in the absence of oxygen. The presence of nitrite reductase was proven in vivo by the demonstration of NO production, showing that the enzyme was expressed in the active form, containing both heme c and d(1). A purification procedure for the recombinant PaNir has been developed, based on the P. aeruginosa purification protocol; spectroscopic analysis of the purified protein fully confirms the presence of the d(1) heme cofactor. Moreover, the functional characterisation of the recombinant NiR has been carried out by monitoring the production of NO by the purified NiR enzyme in the presence of nitrite by an NO electrode. The full recovery of the denitrification properties in the P. stutzeri MK202 strain by genetic complementation with Pa-NiR underlines the high homology between enzymes of nitrogen oxianion respiration. Our work provides an expression system for cd(1) nitrite reductase and its site-directed mutants in a non-pathogenic strain and is a starting point for the in vivo study of recombinant enzyme variants. 相似文献
5.
Rinaldo S Giardina G Castiglione N Stelitano V Cutruzzolà F 《Biochemical Society transactions》2011,39(1):195-200
The cd1 NiRs (nitrite reductases) are enzymes catalysing the reduction of nitrite to NO (nitric oxide) in the bacterial energy conversion denitrification process. These enzymes contain two distinct redox centres: one covalently bound c-haem, which is reduced by external electron donors, and another peculiar porphyrin, the d1-haem (3,8-dioxo-17-acrylate-porphyrindione), where nitrite is reduced to NO. In the present paper, we summarize the most recent results on the mechanism of nitrite reduction by the cd1 NiR from Pseudomonas aeruginosa. We discuss the essential catalytic features of this enzyme, with special attention to the allosteric regulation of the enzyme's activity and to the mechanism employed to avoid product inhibition, i.e. trapping of the active-site reduced haem by the product NO. These results shed light on the reactivity of cd1 NiRs and assign a central role to the unique d1-haem, present only in this class of enzymes. 相似文献
6.
7.
Wijma HJ Jeuken LJ Verbeet MP Armstrong FA Canters GW 《The Journal of biological chemistry》2006,281(24):16340-16346
The homotrimeric copper-containing nitrite reductase (NiR) contains one type-1 and one type-2 copper center per monomer. Electrons enter through the type-1 site and are shuttled to the type-2 site where nitrite is reduced to nitric oxide. To investigate the catalytic mechanism of NiR the effects of pH and nitrite on the turnover rate in the presence of three different electron donors at saturating concentrations were measured. The activity of NiR was also measured electrochemically by exploiting direct electron transfer to the enzyme immobilized on a graphite rotating disk electrode. In all cases, the steady-state kinetics fitted excellently to a random-sequential mechanism in which electron transfer from the type-1 to the type-2 site is rate-limiting. At low [NO(-)(2)] reduction of the type-2 site precedes nitrite binding, at high [NO(-)(2)] the reverse occurs. Below pH 6.5, the catalytic activity diminished at higher nitrite concentrations, in agreement with electron transfer being slower to the nitrite-bound type-2 site than to the water-bound type-2 site. Above pH 6.5, substrate activation is observed, in agreement with electron transfer to the nitrite-bound type-2 site being faster than electron transfer to the hydroxyl-bound type-2 site. To study the effect of slower electron transfer between the type-1 and type-2 site, NiR M150T was used. It has a type-1 site with a 125-mV higher midpoint potential and a 0.3-eV higher reorganization energy leading to an approximately 50-fold slower intramolecular electron transfer to the type-2 site. The results confirm that NiR employs a random-sequential mechanism. 相似文献
8.
An investigation of the ligand-binding properties of Pseudomonas aeruginosa nitrite reductase. 总被引:2,自引:0,他引:2 下载免费PDF全文
The low-temperature e.p.r. and m.c.d. (magnetic-circular-dichroism) spectra of Pseudomonas aeruginosa nitrite reductase, together with those of its partially and fully cyanide-bound derivatives, were investigated. The m.c.d. spectra in the range 600-2000 nm indicate that the native axial ligands to haem c are histidine and methionine, and furthermore that it is the methionine ligand that must be displaced before cyanide binding at this haem. The m.c.d. spectra in the range 1000-2000 nm contain no charge-transfer bands arising from low-spin ferric haem d1, a chlorin. New optical transitions in the region 700-850 nm were found for the cyanide adduct of haem d1. The g-values of haem d1 in the native enzyme are 2.51, 2.43 and 1.71, suggesting co-ordination by two histidine ligands in the oxidized state. There is clear evidence in the e.p.r. data of an interaction between the c and d1 haem groups. This is not apparent in the optical spectra. The results are interpreted in terms of haem groups that are remote from each other, their interaction being mediated through protein conformational changes. The possible implications of this in relation to reduction processes catalysed by the enzyme are considered. 相似文献
9.
Anaerobically induced expression of the nitrite reductase cytochrome c-551 operon from Pseudomonas aeruginosa. 总被引:4,自引:0,他引:4
The nitrite reductase gene (denA) and the cytochrome c-551 gene (denB) are located only 50 bp apart from each other in the Pseudomonas aeruginosa chromosome. We report evidence that these two genes are co-transcribed as an operon only under anaerobic (denitrifying) conditions. The nucleotide sequence of the promoter (regulatory) region of the operon is highly AT-rich and contains a sequence closely resembling the consensus FNR binding site in E. coli. 相似文献
10.
Brown K Roig-Zamboni V Cutruzzola' F Arese M Sun W Brunori M Cambillau C Tegoni M 《Journal of molecular biology》2001,312(3):541-554
The nitrite reductase (NIR) from Pseudomonas aeruginosa (NIR-Pa) is a soluble enzyme catalysing the reduction of nitrite (NO2(-)) to nitric oxide (NO). The enzyme is a 120 kDa homodimer, in which the monomers carry a c-heme domain and a d(1)-heme domain. The structures of the enzyme in both the oxidised and reduced state were solved previously and indicate His327 and His369 as putative catalytic residues. The kinetic characterisation of site-directed mutants has shown that the substitution of either one of these two His with Ala dramatically reduces the physiologically relevant reactivity towards nitrite, leaving the reactivity towards oxygen unaffected. The three-dimensional structures of P. aeruginosa NIR mutant H327A, and H369A in complex with NO have been solved by multiple wavelength anomalous dispersion (MAD), using the iron anomalous signal, and molecular replacement techniques. In both refined crystal structures the c-heme domain, whilst preserving its classical c-type cytochrome fold, has undergone a 60 degrees rigid-body rotation around an axis parallel with the pseudo 8-fold axis of the beta-propeller, and passing through residue Gln115. Even though the distance between the Fe ions of the c and d(1)-heme remains 21 A, the edge-to-edge distance between the two hemes has increased by 5 A. Furthermore the distal side of the d(1)-heme pocket appears to have undergone structural re-arrangement and Tyr10 has moved out of the active site. In the H369A-NO complex, the position and orientation of NO is significantly different from that of the NO bound to the reduced wild-type structure. Our results provide insight into the flexibility of the enzyme and the distinction between nitrite and oxidase reduction mechanisms. Moreover they demonstrate that the two histidine residues play a crucial role in the physiological activity of nitrite reduction, ligand binding and in the structural organisation of nitrite reductase from P. aeruginosa. 相似文献
11.
Basaglia M Toffanin A Baldan E Bottegal M Shapleigh JP Casella S 《FEMS microbiology letters》2007,269(1):124-130
Rhizobium sullae strain HCNT1 contains a nitric oxide-producing nitrite reductase of unknown function due to the absence of a complementary nitric oxide reductase. HCNT1 had the ability to grow on selenite concentrations as high as 50 mM, and during growth, selenite was reduced to the less toxic elemental selenium. An HCNT1 mutant lacking nitrite reductase grew poorly in the presence of 5 mM selenite, was unable to grow in the presence of 25 or 50 mM selenite and also showed no evidence of selenite reduction. A naturally occurring nitrite reductase-deficient R. sullae strain, CC1335, also showed little growth on the higher concentrations of selenite. Mobilization of a plasmid containing the HCNT1 gene encoding nitrite reductase into CC1335 increased its resistance to selenite. To confirm that this ability to grow in the presence of high concentrations of selenite correlated with nitrite reductase activity, a new nitrite reductase-containing strain was isolated from the same location where HCNT1 was isolated. This strain was also resistant to high concentrations of selenite. Inactivation of the gene encoding nitrite reductase in this strain increased selenite sensitivity. These data suggest that the nitrite reductase of R. sullae provides resistance to selenite and offers an explanation for the radically truncated denitrification found uniquely in this bacterium. 相似文献
12.
Wijma HJ Macpherson I Alexandre M Diederix RE Canters GW Murphy ME Verbeet MP 《Journal of molecular biology》2006,358(4):1081-1093
In Cu-containing nitrite reductase from Alcaligenes faecalis S-6 the axial methionine ligand of the type-1 site was replaced (M150G) to make the copper ion accessible to external ligands that might affect the enzyme's catalytic activity. The type-1 site optical spectrum of M150G (A(460)/A(600)=0.71) differs significantly from that of the native nitrite reductase (A(460)/A(600)=1.3). The midpoint potential of the type-1 site of nitrite reductase M150G (E(M)=312(+/-5)mV versus hydrogen) is higher than that of the native enzyme (E(M)=213(+/-5)mV). M150G has a lower catalytic activity (k(cat)=133(+/-6)s(-1)) than the wild-type nitrite reductase (k(cat)=416(+/-10)s(-1)). The binding of external ligands to M150G restores spectral properties, midpoint potential (E(M)<225mV), and catalytic activity (k(cat)=374(+/-28)s(-1)). Also the M150H (A(460)/A(600)=7.7, E(M)=104(+/-5)mV, k(cat)=0.099(+/-0.006)s(-1)) and M150T (A(460)/A(600)=0.085, E(M)=340(+/-5)mV, k(cat)=126(+/-2)s(-1)) variants were characterized. Crystal structures show that the ligands act as allosteric effectors by displacing Met62, which moves to bind to the Cu in the position emptied by the M150G mutation. The reconstituted type-1 site has an otherwise unaltered geometry. The observation that removal of an endogenous ligand can introduce allosteric control in a redox enzyme suggests potential for structural and functional flexibility of copper-containing redox sites. 相似文献
13.
Dora Pinho Stéphane Besson Carlos D Brondino Baltazar de Castro Isabel Moura 《European journal of biochemistry》2004,271(12):2361-2369
The nitrite reductase (Nir) isolated from Pseudomonas chlororaphis DSM 50135 is a blue enzyme, with type 1 and type 2 copper centers, as in all copper-containing Nirs described so far. For the first time, a direct determination of the reduction potentials of both copper centers in a Cu-Nir was performed: type 2 copper (T2Cu), 172 mV and type 1 copper (T1Cu), 298 mV at pH 7.6. Although the obtained values seem to be inconsistent with the established electron-transfer mechanism, EPR data indicate that the binding of nitrite to the T2Cu center increases its potential, favoring the electron-transfer process. Analysis of the EPR spectrum of the turnover form of the enzyme also suggests that the electron-transfer process between T1Cu and T2Cu is the fastest of the three redox processes involved in the catalysis: (a) reduction of T1Cu; (b) oxidation of T1Cu by T2Cu; and (c) reoxidation of T2Cu by NO(2) (-). Electrochemical experiments show that azurin from the same organism can donate electrons to this enzyme. 相似文献
14.
Spectroscopic evidence for a copper-nitrosyl intermediate in nitrite reduction by blue copper-containing nitrite reductase 总被引:1,自引:0,他引:1
S Suzuki T Yoshimura T Kohzuma S Shidara M Masuko T Sakurai H Iwasaki 《Biochemical and biophysical research communications》1989,164(3):1366-1372
The reactions of nitrogen monoxide (NO) with the blue copper-containing nitrite reductases from Alcaligenes sp. NCIB 11015 and Achromobacter cycloclastes IAM 1013 were investigated spectroscopically. The electron paramagnetic resonance (EPR) signals of the blue coppers vanished in the presence of NO at 77 K, being fully restored by the removal of NO. The additions of NO to the enzyme solutions resulted in the substantial bleaching of the visible absorption bands at room temperature. The reactions were also completely reversible. These results suggest the formation of a cuprous nitrosyl complex (Cu+-NO+), which is likely the intermediate in the enzymatic nitrite reduction. 相似文献
15.
16.
Rinaldo S Brunori M Cutruzzolà F 《Biochemical and biophysical research communications》2007,363(3):662-666
Nitrite reductase (cd1NIR) from Pseudomonas aeruginosa, which catalyses the reduction of nitrite to nitric oxide (NO), contains a c-heme as the electron acceptor and a d1-heme where catalysis occurs. Reduction involves binding of nitrite to the reduced d1-heme, followed by dehydration to yield NO; release of NO and re-reduction of the enzyme close the cycle. Since NO is a powerful inhibitor of ferrous hemeproteins, enzymatic turnover demands the release of NO. We recently discovered that NO dissociation from the ferrous d1-heme is fast, showing that cd1NIR behaves differently from other hemeproteins. Here we demonstrate for the first time that the physiological substrate nitrite displaces NO from the ferrous enzyme, which enters a new catalytic cycle; this reaction depends on the conserved His369 whose role in substrate stabilization is crucial for catalysis. Thus we suggest that also in vivo the activity of cd1NIR is controlled by nitrite. 相似文献
17.
Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein 总被引:11,自引:0,他引:11
M C Silvestrini C L Galeotti M Gervais E Schininà D Barra F Bossa M Brunori 《FEBS letters》1989,254(1-2):33-38
The gene coding for nitrite reductase of Pseudomonas aeruginosa has been cloned and its sequence determined. The coding region is 1707 bp long and contains information for a polypeptide chain of 568 amino acids. The sequence of the mature protein has been confirmed independently by extensive amino acid sequencing. The amino-terminus of the mature protein is located at Lys-26; the preceding 25 residue long extension shows the features typical of signal peptides. Therefore the enzyme is probably secreted into the periplasmic space. The mature protein is made of 543 amino acid residues and has a molecular mass of 60,204 Da. The c-heme-binding domain, which contains the only two Cys of the molecule, is located at the amino-terminal region. Analysis of the protein sequence in terms of hydrophobicity profile gives results consistent with the fact that the enzyme is fully water soluble and not membrane bound; the most hydrophilic region appears to correspond to the c-heme domain. Secondary structure predictions are in general agreement with previous analysis of circular dichroic data. 相似文献
18.
Rinaldo S Arcovito A Brunori M Cutruzzolà F 《The Journal of biological chemistry》2007,282(20):14761-14767
The heme-containing periplasmic nitrite reductase (cd(1) NIR) is responsible for the production of nitric oxide (NO) in denitrifying bacterial species, among which are several animal and plant pathogens. Heme NIRs are homodimers, each subunit containing one covalently bound c-heme and one d(1)-heme. The reduction of nitrite to NO involves binding of nitrite to the reduced protein at the level of d(1)-heme, followed by dehydration of nitrite to yield NO and release of the latter. The crucial rate-limiting step in the catalytic mechanism is thought to be the release of NO from the d(1)-heme, which has been proposed, but never demonstrated experimentally, to occur when the iron is in the ferric form, given that the reduced NO-bound derivative was presumed to be very stable, as in other hemeproteins. We have measured for the first time the kinetics of NO binding and release from fully reduced cd(1) NIR, using the enzyme from Pseudomonas aeruginosa and its site-directed mutant H369A. Quite unexpectedly, we found that NO dissociation from the reduced d(1)-heme is very rapid, several orders of magnitude faster than that measured for b-type heme containing reduced hemeproteins. Because the rate of NO dissociation from reduced cd(1) NIR, measured in the present report, is faster than or comparable with the turnover number, contrary to expectations this event may well be on the catalytic cycle and not necessarily rate-limiting. This finding also provides a rationale for the presence in cd(1) NIR of the peculiar d(1)-heme cofactor, which has probably evolved to ensure fast product dissociation. 相似文献
19.
The pH-dependent changes of intramolecular electron transfer on copper-containing nitrite reductase.
Electron transfer over 12.6 A from the type 1 copper (T1Cu) to the type 2 copper (T2Cu) was investigated in the copper-containing nitrite reductases from two denitrifying bacteria (Alcaligenes xylosoxidans GIFU 1051 and Achromobacter cycloclastes IAN 1013), following pulse radiolytical reduction of T1Cu. In the presence of nitrite, the rate constant for the intramolecular electron transfer of the enzyme from A. xylosoxidans decreased 1/2 fold to 9 x 10(2) s-1 (20 degrees C, pH 7.0) as compared to that for the same process in the absence of nitrite. However, the rate constant increased with decreasing pH to become the same (2 x 10(3) s-1) as that in the absence of nitrite at pH 6.0. A similar result was obtained for the enzyme from A. cycloclastes. The pH profiles of the two enzymes in the presence of nitrite are almost the same as that of the enzyme activity of nitrite reduction. This suggests that the intramolecular electron transfer process is closely linked to the following process of catalytic reduction of nitrite. The difference in redox potential (DeltaE) of T2Cu minus T1Cu was calculated from equilibrium data for the electron transfer. The pH-dependence of DeltaE was in accord with the equation: DeltaE = DeltaE(0)+0.058 log (Kr[H+]+[H+]2)/(K(0)+[H+]), where K(r) and K(0) are the proton dissociation constants for the oxidized and reduced states of T2Cu, respectively. These results raise the possibility that amino acid residues linked by the redox of T2Cu play important roles in the enzyme reaction, being located near T2Cu. 相似文献
20.
A nitrite reductase from Achromobacter cycloclastes 总被引:9,自引:0,他引:9