共查询到20条相似文献,搜索用时 0 毫秒
1.
Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood.Methods: Human prostate cancer (HPC) cells were cultured in vitro and cell viability was detected by the CCK-8 assay. The ultrastructure changes were observed under transmission electron microscope (TEM). Chemical staining with acridine orange (AO), MDC or DAPI was used to detect acidic vesicular organelles (AVOs) and alternation of DNA. Expression of LC3 and P21 was detected by Western Blot. Apoptotic rates and cell cycle arrest were detected by FACS.Results: Our study demonstrated that after ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell cycle arrest at the G2/M phase. A large number of autophagosomes with double-membrane structure and acidic vesicular organelles (AVOs) were detected in the cytoplasm of HPC cells treated with ORI for 24 hours. ORI resulted in the conversion of LC3-I to LC3-II and recruitment of LC3-II to the autophagosomal membranes. Autophagy inhibitor 3-methyladenine (3-MA) reduced AVOs formation and inhibited LC3-I to LC3-II conversion. At 48 h, DNA fragmentation, chromatin condensation and disappearance of surface microvilli were detected in ORI-treated cells. ORI induced a significant increase in the number of apoptotic cells (PC-3: 5.4% to 27.0%, LNCaP: 5.3% to 31.0%). Promoting autophagy by nutrient starvation increased cell viability, while inhibition of autophagy by 3-MA promoted cell death. The expression of P21 was increased by ORI, which could be completely reversed by the inhibition of autophagy.Conclusions: Our findings indicated that autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis. Our results provide an experimental basis for understand the anti-tumor mechanism of ORI as treatment for prostate cancer. 相似文献
2.
3.
Overexpression of PTEN induces cell growth arrest and apoptosis in human breast cancer ZR-75-1 cells 总被引:2,自引:0,他引:2
Phosphatase and tensin homolog (PTEN) is a tumor suppressor gene located at human chromosome 10q23, might play an important role in cell proliferation, cell cycle and apoptosis of cancer cells. In this study, the eukaryotic expression vectors pBP-wt-PTEN (containing a wild-type PTEN gene) and pBP-G129R-PTEN (containing a mutant PTEN gene) were used to transfect breast cancer ZR-75-1 cells. After transfection, ZR-75-1 cells expressing PTEN were obtained and tested. The blue exclusion assay showed the growth rate of the cells transfected with pBP-wt-PTEN was significantly lower than that of the control cells transfected with pBP-G129R-PTEN. Analysis of the cell cycle by flow cytometry showed that the progression from the G1 to the S phase was arrested in cells expressing wild-type PTEN. Some typical morphological changes of apoptosis were also observed in cells transfected with pBP-wt-PTEN, but not in those transfected with pBP-G 129R-PTEN. This study shows that overexpression of PTEN in ZR-75-1 cells leads to cell growth arrest and apoptosis. 相似文献
4.
5.
Xiaolan Hu Xianqi Zhang Daihua Yu 《Biochemical and biophysical research communications》2010,398(1):62-67
Recently, salidroside (p-hydroxyphenethyl-β-d-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment. 相似文献
6.
7.
Di Wu Yana Zhao Shengnan Fu Jianbo Zhang Wenhang Wang Zhexian Yan 《Cell cycle (Georgetown, Tex.)》2018,17(13):1579-1590
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and ?3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway. 相似文献
8.
Dominik Fuchs 《Biochemical and biophysical research communications》2009,390(3):743-103
Salinomycin is a polyether antibiotic isolated from Streptomyces albus that acts in different biological membranes as a ionophore with a preference for potassium. It is widely used as an anticoccidial drug in poultry and is fed to ruminants to improve nutrient absorption and feed efficiency. Salinomycin has recently been shown to selectively deplete human breast cancer stem cells from tumorspheres and to inhibit breast cancer growth and metastasis in mice. We show here that salinomycin induces massive apoptosis in human cancer cells of different origin, but not in normal cells such as human T lymphocytes. Moreover, salinomycin is able to induce apoptosis in cancer cells that exhibit resistance to apoptosis and anticancer agents by overexpression of Bcl-2, P-glycoprotein or 26S proteasomes with enhanced proteolytic activity. Salinomycin activates a distinct apoptotic pathway that is not accompanied by cell cycle arrest and that is independent of tumor suppressor protein p53, caspase activation, the CD95/CD95L system and the proteasome. Thus, salinomycin should be considered as a novel and effective anticancer agent that overcomes multiple mechanisms of apoptosis resistance in human cancer cells. 相似文献
9.
Adenovirus-mediated expression of Fas ligand induces apoptosis of human prostate cancer cells 总被引:1,自引:0,他引:1
Hedlund TE Meech SJ Srikanth S Kraft AS Miller GJ Schaack JB Duke RC 《Cell death and differentiation》1999,6(2):175-182
Several laboratories have reported on the apoptotic potentials of human prostate cancer (PC) cell lines in response to crosslinking of Fas (CD95/APO-1) with agonistic anti-Fas antibodies. We have re-evaluated the apoptotic potentials of seven human PC cell lines using the natural Fas ligand (FasL) in place of agonistic antibody. First, PC cell lines were tested in a standard cytotoxicity assay with a transfected cell line that stably expresses human FasL. Next, we developed an adenoviral expression system employing 293 cells that stably express crmA, a poxvirus inhibitor of apoptosis, to analyze the effects of FasL when expressed internally by the PC cell lines. Our data suggest that the apoptotic potentials of these cell lines were greatly underestimated in previous studies utilizing agonistic anti-Fas antibodies. Lastly, adenoviral-mediated expression of FasL prevented growth and induced regression of two human PC cell lines in immunodeficient mice. These preliminary in vivo results suggest a potential use for adenovirus encoding FasL as a gene therapy for PC. 相似文献
10.
Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction 总被引:25,自引:0,他引:25
The aim of this study was to determine the mechanisms of curcumin-induced human breast cancer cell apoptosis. From quantitative image analysis data showing an increase in the percentage of cells with a sub-G0/G1 DNA content, we demonstrated curcumin-induced apoptosis in the breast cancer cell line MCF-7, in which expression of wild-type p53 could be induced. Apoptosis was accompanied by an increase in p53 level as well as its DNA-binding activity followed by Bax expression at the protein level. Further experiments using p53-null MDAH041 cell as well as low and high p53-expressing TR9-7 cell, in which p53 expression is under tight control of tetracycline, established that curcumin induced apoptosis in tumor cells via a p53-dependent pathway in which Bax is the downstream effector of p53. This property of curcumin suggests that this molecule could have a possible therapeutic potential in breast cancer patients. 相似文献
11.
Activated phagocytes employ myeloperoxidase to generate glycolaldehyde, 2-hydroxypropanal, and acrolein. Because alpha-hydroxy and alpha,beta-unsaturated aldehydes are highly reactive, phagocyte-mediated formation of these products may play a role in killing bacteria and tumor cells. Using breast cancer cells, we demonstrate that glycolaldehyde inactivates glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and Cu,Zn superoxide dismutase, suppresses cell growth, and induces apoptosis. These results suggest that glycolaldehyde might be an important mediator of neutrophil anti-tumor activity. 相似文献
12.
13.
Karlenius TC Shah F Di Trapani G Clarke FM Tonissen KF 《Biochemical and biophysical research communications》2012,419(2):350-355
The thioredoxin system is a key cellular antioxidant system and is highly expressed in cancer cells, especially in more aggressive and therapeutic resistant tumors. We analysed the expression of the thioredoxin system in the MDA-MB-231 breast cancer cell line under conditions mimicking the tumor oxygen microenvironment. We grew breast cancer cells in either prolonged hypoxia or hypoxia followed by various lengths of reoxygenation and in each case cells were cultured with or without a hypoxic cycling preconditioning (PC) phase preceding the hypoxic growth. Flow cytometry-based assays were used to measure reactive oxygen species (ROS) levels. Cells grown in hypoxia showed a significant decrease in ROS levels compared to normoxic cells, while a significant increase in ROS levels over normoxic cells was observed after 4 h of reoxygenation. The PC pre-treatment did not have a significant effect on ROS levels. Thioredoxin levels were also highest after 4 h of reoxygenation, however cells subjected to PC pre-treatment displayed even higher thioredoxin levels. The high level of intracellular thioredoxin was also reflected on the cell surface. Reporter assays showed that activity of the thioredoxin and thioredoxin reductase gene promoters was also highest in the reoxygenation phase, although PC pre-treatment did not result in a significant increase over non-PC treated cells. The use of a dominant negative Nrf-2 negated the increased thioredoxin promoter activity during reoxygenation. This data suggests that the high levels of thioredoxin observed in tumors may arise due to cycling between hypoxia and reoxygenation. 相似文献
14.
This study investigated the role of the caspase activation cascade in extrinsic and intrinsic apoptosis induced by equol in human breast cancer MDA-MB cells. First, the antiproliferative effect of equol was determined in cells treated with 1-100 μM equol for 24, 48, and 72 h. Equol significantly inhibited cell proliferation in a dose-dependent manner (p < 0.05). Exposure to 50 or 100 μM equol for 72 h strongly promoted apoptosis. Under the same conditions, remarkable cytochrome c release was observed. Subsequently, caspase-9, which acts in mitochondria-mediated apoptosis, was cleaved by equol at high concentrations, but caspase-8 activation of receptor-mediated apoptosis was not observed. At both equol concentrations, the caspase-8 and -9 activity assays showed similar patterns. In addition, equol treatment activated caspase-3, which is downstream from caspase-9, and this was accompanied by the cleavage of capase-6 and -7. Activation of these caspases leads to increased activation of PARP, lamin, and ICAD. This study suggests that equol induces the intrinsic pathway of apoptosis via caspase-9 and cytochrome c, independent of caspase-8, in human breast cancer MDA-MB-453 cells. 相似文献
15.
Monascus-fermented red mold rice exhibits cytotoxic effect and induces apoptosis on human breast cancer cells 总被引:1,自引:0,他引:1
Chu-I Lee Chun-Lin Lee Jyi-Faa Hwang Yi-Hsin Lee Jyh-Jye Wang 《Applied microbiology and biotechnology》2013,97(3):1269-1278
Red mold rice (RMR) is a traditional food and folk medicine to Asian people and has recently become a popular health supplement. RMR has been shown to have some anticancer activities, although the mechanism for inducing cell death of human breast cancer cells is still not fully understood. In this study, bioactive extracts of RMR fermented by Monascus purpureus NTU 803 were analyzed for effects on apoptosis induction in human breast cancer cells. The RMR ethanol extract and ethyl acetate extract contain monacolin K, total phenols, and flavonoids, the three components that have been reported to have anticancer activity. Red mold rice extracts (RMRE) exhibited selective cytotoxic effect on MCF-7 cells. RMRE treatment induced apoptosis and cell cycle arrest at G2/M phase. Apoptosis was confirmed by annexin V–fluorescein isothiocyanate (FITC)/propidium iodide staining, the observation of characteristic chromatin condensation, nuclear DNA fragmentation, and poly(ADP-ribose) polymerase cleavage. Furthermore, the RMRE-induced apoptosis in MCF-7 cells may occur through a mitochondria-dependent pathway while triggering an appropriate balance of bax/bcl-2 and activation of caspase-9 and caspase-3 in a time-dependent manner. To conclude, RMRE exhibits direct cytotoxic and proapoptotic effects on MCF-7 cells and could be considered as a potential functional food for breast cancer prevention. 相似文献
16.
Jayant Dewangan Sonal Srivastava Sakshi Mishra Prabhash Kumar Pandey Aman Divakar Srikanta Kumar Rath 《Biochemical and biophysical research communications》2018,495(2):1915-1921
Human triple-negative breast cancer (TNBC) is poorly diagnosed and unresponsive to conventional hormone therapy. Chetomin (CHET), a fungal metabolite synthesized by Chaetomium cochliodes, has been reported as a promising anticancer and antiangiogenic agent but the complete molecular mechanism of its anticancer potential remains to be elucidated. In our study, we explored the anti-neoplastic action of CHET on TNBC cells. Cytotoxicity studies were performed in human TNBC cells viz. MDA-MB-231 and MDA-MB-468 cells by Sulforhodamine B assay. It exhibited antiproliferative response and induced apoptosis in both the cell types. Cell cycle analysis revealed that it increases the sub G0/G1 phase cell population. Modulation of mitochondrial membrane potential, activation of caspase 3/7 and a remarkable increase in the expression of cleaved PARP and increased chromatin condensation was observed after CHET treatment in MDA-MB-231 and MDA-MB-468 cells. Additionally, an elevated level of intracellular Ca2+ played an important role in CHET mediated cell death response. Calcium overload in mitochondria led to release of cytochrome c which in turn triggered caspase-3 mediated cell death. Inhibition of calcium signalling using BAPTA-AM reduced apoptosis confirming the involvement of calcium signalling in CHET induced cell death. Chetomin also inhibited PI3K/mTOR cell survival pathway in human TNBC cells. The overall findings suggest that Chetomin inhibited the growth of human TNBC cells by caspase-dependent apoptosis and modulation of PI3K/mTOR signalling and could be used as a novel chemotherapeutic agent for the treatment of human TNBC in future. 相似文献
17.
TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells 总被引:16,自引:0,他引:16
Li JH Kirkiles-Smith NC McNiff JM Pober JS 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(3):1526-1533
Human TRAIL can efficiently kill tumor cells in vitro and kill human tumor xenografts in mice with little effect on normal mouse cells or tissues. The effects of TRAIL on normal human tissues have not been described. In this study, we report that endothelial cells (EC), isolated from human umbilical veins or human dermal microvessels, express death domain-containing TRAIL-R1 and -R2. Incubation with TRAIL for 15 h causes approximately 30% of cultured EC to die, as assessed by propidium iodide uptake. Death is apoptotic, as assessed by Annexin V staining, 4',6'-diamidino-2-phenylindole staining, and DNA fragment ELISA. EC death is increased by cotreatment with cycloheximide but significantly reduced by caspase inhibitors or transduced dominant-negative Fas-associated death domain protein. In surviving cells, TRAIL activates NF-kappaB, induces expression of E-selectin, ICAM-1, and IL-8, and promotes adhesion of leukocytes. Injection of TRAIL into human skin xenografts promotes focal EC injury accompanied by limited neutrophil infiltration. These data suggest that TRAIL is an inducer of tissue injury in humans, an outcome that may influence antitumor therapy with TRAIL. 相似文献
18.
Jing Zhang Li Li Yueting Peng Yu Chen Xiaoying Lv Shun Li Xiang Qin Hong Yang Chunhui Wu Yiyao Liu 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(1):172-185
Tumor cell can be significantly influenced by various chemical groups of the extracellular matrix proteins. However, the underlying molecular mechanisms involved in the interaction between cancer cells and functional groups in the extracellular matrix remain unknown. Using chemically modified surfaces with biological functional groups (CH3, NH2, OH), it was found that hydrophobic surfaces modified with CH3 and NH2 suppressed cell proliferation and induced the number of apoptotic cells. Mitochondrial dysfunction, cytochrome c release, Bax upregulation, cleaved caspase-3 and PARP, and Bcl-2 downregulation indicated that hydrophobic surfaces with CH3 and NH2 triggered the activation of intrinsic apoptotic signaling pathway. Cells on the CH3- and NH2-modified hydrophobic surfaces showed downregulated expression and activation of integrin β1, with a subsequent decrease of focal adhesion kinase (FAK) activity. The RhoA/ROCK/PTEN signaling was then activated to inhibit the phosphorylation of PI3K and AKT, which are essential for cell proliferation. However, pretreatment of MDA-MB-231 cells with SF1670, a PTEN inhibitor, abolished the hydrophobic surface-induced activation of the intrinsic pathway. Taken together, the present results indicate that CH3- and NH2-modified hydrophobic surfaces induce mitochondria-mediated apoptosis by suppressing the PTEN/PI3K/AKT pathway, but not OH surfaces. These findings are helpful to understand the interaction between extracellular matrix and cancer cells, which might provide new insights into the mechanism potential intervention strategies for tumor prognosis. 相似文献
19.
Wesierska-Gadek J Wandl S Kramer MP Pickem C Krystof V Hajek SB 《Journal of cellular biochemistry》2008,105(5):1161-1171
Exposure of human HeLaS(3) cervix carcinoma cells to high doses of conventional cytostatic drugs, e.g. cisplatin (CP) strongly inhibits their proliferation. However, most cytostatic agents are genotoxic and may generate a secondary malignancy. Therefore, therapeutic strategy using alternative, not cytotoxic drugs would be beneficial. Inhibition of cyclin-dependent kinases (CDKs) by pharmacological inhibitors became recently a promising therapeutic option. Roscovitine (ROSC), a selective CDK inhibitor, efficiently targets human malignant cells. ROSC induces cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. ROSC also activates p53 protein. Activation of p53 tumor suppressor protein is essential for induction of apoptosis in MCF-7 cells. Considering the fact that in HeLaS(3) cells wt p53 is inactivated by the action of HPV-encoded E6 oncoprotein, we addressed the question whether ROSC would be able to reactivate p53 protein in them. Their exposure to ROSC for 24 h induced cell cycle arrest at G(2)/M and reduced the number of viable cells. Unlike CP, ROSC in the used doses did not induce DNA damage and was not directly cytotoxic. Despite lack of detectable DNA lesions, ROSC activated wt p53 protein. The increase of p53 levels was attributable to the ROSC-mediated protein stabilization. Further analyses revealed that ROSC induced site-specific phosphorylation of p53 protein at Ser46. After longer exposure, ROSC induced apoptosis in HeLaS(3) cells. These results indicate that therapy of HeLaS(3) cells by ROSC could offer an advantage over that by CP due to its increased selectivity and markedly reduced risk of generation of a secondary cancer. 相似文献
20.
Areum Daseul Kim Kyoung Ah Kang Mei Jing Piao Ki Cheon Kim Jian Zheng Cheng Wen Yao Ji Won Cha Chang Lim Hyun Sun Jin Boo Nam Ho Lee Soo Young Na Jin Won Hyun 《Biotechnology and Bioprocess Engineering》2014,19(3):419-425
The present study investigated the cytotoxic and apoptotic effects of an ethanol extract derived from the marine brown alga Dictyopteris undulata against human colon adenocarcinoma cells. The Dictyopteris undulata extract (DUE) showed cytotoxic activity against SW480 cells in a dose-dependent manner, with 50% inhibition of cell viability at a concentration of 40 μg/mL. DUE also induced programmed cell death in SW480 cells, as evidenced by apoptotic body formation, DNA fragmentation, an increase in the population of apoptotic sub-G1 phase cells, and mitochondrial membrane depolarization. Moreover, DUE significantly modulated the expression of apoptosisassociated proteins, resulting in a decrease in B cell lymphoma-2 expression and an increase in Bcl-2-associated X protein expression, as well as the activation of caspase-9 and caspase-3. Furthermore, DUE showed apoptotic cell death in two other colon cancer cell lines, SNU407 and HT29. These observations suggest that DUE may prove useful as a therapeutic agent for the attenuation of colon cancer. 相似文献