首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In gynodioecious species, females sacrifice fitness by not producing pollen, and hence must have a fitness advantage over hermaphrodites. Because females are obligately outcrossed, they may derive a fitness advantage by avoiding selfing and inbreeding depression. However, both sexes are capable of biparental inbreeding, and there are currently few estimates of the independent effects of maternal sex and multiple levels of inbreeding on female advantage. To test these hypotheses, females and hermaphrodites from six Alaskan populations of Silene acaulis were crossed with pollen from self (hermaphrodites only), a sibling, a random plant within the same population, and a plant from a different population. Germination, survivorship and early growth revealed inbreeding depression for selfs and higher germination but reduced growth in sib-crosses, relative to outcrosses. Independent of mate relatedness, females germinated more seeds that grew faster than offspring from hermaphrodites. This indicates that inbreeding depression as well as maternal sex can influence breeding system evolution. The effect of maternal sex may be explained by higher performance of female genotypes and a greater abundance of female genotypes among the offspring of female mothers.  相似文献   

2.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

3.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   

4.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

5.
Gynodioecy, the co-occurrence of female and hermaphroditic individuals within a population, is an important intermediate in the evolution of separate sexes. The first step, female maintenance, requires females to have higher seed fitness compared with hermaphrodites. A common mechanism thought to increase relative female fitness is inbreeding depression avoidance, the magnitude of which depends on hermaphroditic selfing rates and the strength of inbreeding depression. Less well studied is the effect of biparental inbreeding on female fitness. Biparental inbreeding can affect relative female fitness only if its consequence or frequency differs between sexes, which could occur if sex structure and genetic structure both occur within populations. To determine whether inbreeding avoidance and/or biparental inbreeding can account for female persistence in Geranium maculatum, we measured selfing and biparental inbreeding rates in four populations and the spatial genetic structure in six populations. Selfing rates of hermaphrodites were low and did not differ significantly from zero in any population, leading to females gaining at most a 1–14% increase in seed fitness from inbreeding avoidance. Additionally, although significant spatial genetic structure was found in all populations, biparental inbreeding rates were low and only differed between sexes in one population, thereby having little influence on female fitness. A review of the literature revealed few sexual differences in biparental inbreeding among other gynodioecious species. Our results show that mating system differences may not fully account for female maintenance in this species, suggesting other mechanisms may be involved.  相似文献   

6.
In gynodioecious plants, seed offspring from hermaphrodites often perform less well than those from females. This lower performance sometimes can be attributed to inbreeding by hermaphrodites or to relatively greater provisioning of individual seeds by females. However, these hypotheses are not explanatory when only outcrossing occurs and when individual seeds of the two morphs are equally well provisioned. Three hypotheses may explain the lower fitness of seed offspring from hermaphrodites in such cases. The morphology hypothesis states that the opportunity for gametophytic selection is lower within flowers of hermaphrodites compared to flowers on females, because the perfect flowers of hermaphrodites are relatively short-styled. The cytotype hypothesis states that the performance difference is directly caused by an individual's cytotype, whose frequency in the population may differ for the two sex morphs. The pleiotropy hypothesis states that negative pleiotropic effects of nuclear restorer alleles or alleles hitchhiking with them are expressed more often by offspring from hermaphrodites. We performed two experiments using the gynodioecious plant Silene acaulis to contrast these hypotheses. In our first experiment we contrasted the morphology and pleiotropy hypotheses by performing controlled pollinations and subsequently planting seeds in both the greenhouse and field. Hermaphrodites of S. acaulis can produce both pistillate and perfect flowers, which allowed us to determine whether flower morphology affects offspring survivorship independent of the sex of the maternal parent. We found that neither seed mass nor germination differed between seeds from females and hermaphrodites. Offspring from pistillate flowers on hermaphrodites did not differ significantly in their survival compared to offspring from perfect flowers on hermaphrodites, but had lower survivorship compared to offspring from pistillate flowers on females, refuting the morphology hypothesis. In a second experiment, we compared offspring survival of full-sibling pairs of females and hermaphrodites (who shared the same cytoplasm) to contrast the cytotype and pleiotropy hypotheses. We found that seed offspring from females and hermaphrodites that shared the same cytoplasm differed in their survival, which is counter to the prediction of the cytotype hypothesis. In both experiments, the sex of the maternal parent significantly affected offspring survival, with seed offspring from hermaphrodites surviving less well than those from females. These results support the pleiotropy hypothesis. We conclude by discussing alternative ways of thinking about negative pleiotropic effects of nuclear restorers or "the cost of restoration."  相似文献   

7.
The evolution of separate sexes as a means of avoiding self-fertilization requires the controversial coexistence of large inbreeding depression and high selfing rate in the ancestral hermaphrodite population. Fitness components of adult females and hermaphrodites in nature, of their open-pollinated progeny, and of experimental selfs and outcrosses onto hermaphrodites were compared in endemic Hawaiian Bidens sandvicensis, all of whose known populations are gynodioecious, consisting of a mixture of females and hermaphrodites. Multilocus selfing rates of hermaphrodites were also estimated, and sex morph ratio monitored over four seasons in three populations of B. sandvicensis and one population of gynodioecious B. cervicata. Total mean inbreeding depression in seed set (in the glasshouse), germination rate (in an open-air nursery on Kauai), and first year survivorship and fecundity in the field were estimated as 0.94 (SE 0.04), and occurred primarily in drought months. Lower survivorship and fecundity of selfs were partially explained by their consistently smaller size. Open-pollinated seed of females had significantly lower germination rate, proportion flowering, and fecundity than outcrossed progeny of hermaphrodites, suggesting moderate biparental inbreeding in females and a lack of any non-outcrossing advantage to progeny of females. In all fitness components, open-pollinated progeny of hermaphrodites were inferior to those of females and to outcrosses, and in most components were superior to selfs. Total performance of open-pollinated progeny of females relative to those of hermaphrodites was calculated as 2.3 (SE = 0.4), but since inflorescences of females also set 20% to 50% more seed than those of hermaphrodites, their total relative ovule success was estimated as 3.2 (SE = 0.5). If inheritance of male sterility is nuclear, this superiority is sufficient to maintain females in frequencies over 20% in populations, whose actual frequencies ranged from 14% to 33%. In four populations, selfing rates of hermaphrodites, assayed in seedlings, were 0.50, 0.45, 0.25, and 0.30, but since substantial inbreeding depression occurred prior to germination, the mean selfing rate of hermaphrodite ovules exceeded 0.57. Female frequencies were significantly higher in the two populations with higher hermaphrodite selfing rate. These results suggest that inbreeding depression can exert a profound influence on the mating system of self-compatible plants on Hawaii and perhaps other oceanic islands, and can be sufficiently strong to electively favor the elimination of the male function.  相似文献   

8.
On the gynodioecious polymorphism in Saxifraga granulata L. (Saxifragaceae)   总被引:1,自引:0,他引:1  
Sexual and vegetative fitness components in hermaphrodite and female plants of the self-compatible, perennial herb Saxifraga granulata are compared using material derived from a gynodioecious population in northern England.
Females produced only 57% as many seeds as hermaphrodites, but their ovule offspring were 1.28 times as fit as those of hermaphrodites, and females were more vegetatively vigorous. The advantages to females in ovule offspring quality and in vegetative reproduction counteract their disadvantages in pollen and seed production and therefore probably play a role in the maintenance of the gynodioecious polymorphism. Pollination ecology, resource reallocation and inbreeding depression all appear to contribute to the observed sex differences in fitness.  相似文献   

9.
The selling rate of hermaphrodites, inbreeding depression, and relative fecundity of females compared to hermaphrodites were estimated for a gynodioecious population of Chionographis japonica var. kurohimensis to test the models for the evolution of gynodioecy. In spite of the high level of selling of hermaphrodites, significant amounts of inbreeding depression were found in seed germination and seedling growth. In addition, females produced more fertilized ovules than hermaphrodites. Nevertheless, the conditions theoretically required for maintaining gynodioecy were not satisfied even if the combined effect of these two factors was considered. Additional causes for the evolution of gynodioecy, including biparental inbreeding, are discussed.  相似文献   

10.
Li J  Koski MH  Ashman TL 《Annals of botany》2012,109(3):545-552

Background and Aims

Gynodioecy is a phylogenetically widespread and important sexual system where females coexist with hermaphrodites. Because dioecy can arise from gynodioecy, characterization of gynodioecy in close relatives of dioecious and sub-dioecious species can provide insight into this transition. Thus, we sought to determine whether Fragaria vesca ssp. bracteata, a close relative to F. chiloensis and F. virginiana, exhibits the functional and population genetic hallmarks of a gynodioecious species.

Methods

We compared reproductive allocation of females and hermaphrodites grown in the greenhouse and estimated genetic diversity (allelic diversity, heterozygosity) and inbreeding coefficients for field-collected adults of both sexes using simple sequence repeat (SSR) markers. We estimated mating system and early seed fitness from open-pollinated families of both sex morphs.

Key Results

Under greenhouse conditions, females and hermaphrodites allocated similarly to all reproductive traits except flower number, and, as a consequence, females produced 30 % fewer seeds per plant than hermaphrodites. Under natural conditions, hermaphrodites produce seeds by self-fertilization approx. 75 % of the time, and females produced outcrossed seeds with very little biparental inbreeding. Consistent with inbreeding depression, seeds from open-pollinated hermaphrodites were less likely to germinate than those from females, and family-level estimates of hermaphrodite selfing rates were negatively correlated with germination success and speed. Furthermore, estimates of inbreeding depression based on genetic markers and population genetic theory indicate that inbreeding depression in the field could be high.

Conclusions

The joint consideration of allocation and mating system suggests that compensation may be sufficient to maintain females given the current understanding of sex determination. Fragaria vesca ssp. bracteata exhibited similar sex morph-dependent patterns of mating system and genetic diversity, but less reproductive trait dimorphism, than its sub-dioecious and dioecious congeners.  相似文献   

11.
In gynodioecious species, females coexist with hermaphrodites in natural populations even though hermaphrodites attract more pollinators, are capable of reproducing through pollen, and can self-fertilize. This study tests the hypothesis that inbreeding depression helps to maintain females in natural populations. It also examines whether gender lineages that differ in selfing rates might experience different levels of inbreeding depression. Female and hermaphroditic lineages of the gynodioecious species Geranium maculatum were used in self, sib-cross and outcross experiments to examine inbreeding depression levels and to determine whether these levels differ between hermaphroditic and female lineages. Six fitness correlates were measured in the greenhouse and compared among pollination types and between genders. Severe inbreeding depression was found for both individual fitness traits and cumulative fitness in early life history stages. Inbreeding depression levels were slightly higher in hermaphroditic than in female lineages, but this difference was not statistically significant. Because females are unable to self-pollinate and are less likely to experience inbreeding than hermaphrodites under natural conditions, these results suggest that severe inbreeding depression could confer a selective advantage for females that could help to maintain females in natural populations.  相似文献   

12.
Predominantly outcrossing plant species are expected to accumulate recessive deleterious mutations, which can be purged when in a homozygous state following selfing. Individuals may vary in their genetic load because of different selfing histories, which could lead to differences in inbreeding depression among families. Lineage-dependent inbreeding depression can appear in gynodioecious species if obligatory outcrossed females are more likely to produce female offspring and if partially selfing hermaphrodites are more likely to produce hermaphrodites. We investigated inbreeding depression at the zygote, seed, and germination stages in the gynomonoecious-gynodioecious Dianthus sylvestris, including pure-sexed plants and a mixed morph. We performed hand-pollinations on 56 plants, belonging to the three morphs, each receiving 2-3 cross treatments (out-, sib- and self-pollination) on multiple flowers. Effects of cross treatments varied among stages and influenced seed provisioning, with sibling competition mainly occurring within outcrossed fruits. We found significant inbreeding depression for seed mass and germination and cumulative early inbreeding depression varied greatly among families. Among sex morphs, we found that females and hermaphrodites differed in biparental inbreeding depression, whereas uniparental was similar for all. Significant inbreeding depression levels may play a role in female maintenance in this species, and individual variation in association with sex-lineages proclivity is discussed.  相似文献   

13.
Abstract Levels of selfing and resource allocation patterns were investigated in Schiedea salicaria (Caryophyllaceae), a gynodioecious species with high levels of inbreeding depression and nuclear control of male sterility. Selfing levels were higher in hermaphrodites than females, especially when adjusted for early acting inbreeding depression. The sexes of S. salicaria were similar in most allocation patterns including number of flowers and capsules per inflorescence, seeds per flower, and seed mass. Seeds produced by females had higher levels of germination than seeds of hermaphrodites, a likely result of high selfing levels and the expression of inbreeding depression in the progeny of hermaphrodites. Invasion of females in populations of S. salicaria is probably related to the expression of inbreeding depression at germination and in later life history stages. Comparisons with related species of Schiedea that also have nuclear control of male sterility suggest that reallocation of resources in hermaphrodites to male function occurs as females increase in frequency, but that resource reallocation is not important for the success of females when they first invade populations.  相似文献   

14.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

15.

Background and Aims

A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents'' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum.

Methods

Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population''s genetic structure.

Key Results

Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them.

Conclusions

The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related) parents survive better.  相似文献   

16.
Inbreeding depression is one of the hypotheses explaining the maintenance of females within gynodioecious plant populations. However, the measurement of fitness components in selfed and outcrossed progeny depends on life-cycle stage and the history of inbreeding. Comparative data indicate that strong inbreeding depression is more likely to occur at later life-cycle stages. We used hermaphrodite individuals of Silene vulgaris originating from three populations located in different valleys in the Swiss Alps to investigate the effect of two generations of self- and cross-fertilization on fitness components among successive stages of the life cycle in a glasshouse experiment. We detected significant inbreeding depression for most life-cycle stages including: the number of viable and aborted seeds per fruit, probability of germination, above ground biomass, probability of flowering, number of flowers per plant, flower size and pollen viability. Overall, the intensity of inbreeding depression increased among successive stages of the life cycle and cumulative inbreeding depression was significantly stronger in the first generation (delta approximately 0.5) compared with the second generation (delta approximately 0.35). We found no evidence for synergistic epistasis in our experiment. Our finding of more intense inbreeding depression during later stages of the life cycle may help to explain the maintenance of females in gynodioecious populations of S. vulgaris because purging of genetic load is less likely to occur.  相似文献   

17.
In gynodioecious plants the selective processes that determine the relative number of female and hermaphroditic individuals are often frequency dependent. Frequency-dependent fitness can occur in the two sexes through a variety of mechanisms, especially given pollen limitation and inbreeding depression when hermaphrodites are rare. Frequency dependence in several components of the fitness of female and hermaphroditic Silene vulgaris was tested in experiments in which the relative numbers of the two sexes was varied among 12 artificial populations. In females, the proportion of flowers that set fruit covaried positively among populations with the frequency of hermaphrodites in two separate experiments, whereas the number of flowers/plant covaried negatively in one case. In hermaphrodites, the number of seeds/fruit covaried positively with the frequency of hermaphrodites, whereas the fitness of hermaphrodites estimated through pollen transfer covaried negatively. The results are discussed as they relate to the selective maintenance of gynodioecy in S. vulgaris and in light of a recent model of the effect of population structure on selection in gynodioecious systems.  相似文献   

18.
 In gynodioecious species, females contribute genes to future generations only through ovules, and to persist in populations they must have a compensatory advantage compared with hermaphrodites that reproduce via ovules and pollen. This compensation can result from greater fecundity and/or superior success of progeny from females. We examined differences in seed production and progeny success between females and hermaphrodites in the geophyte Wurmbea biglandulosa to explain the maintenance of females. Females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites but this did not necessarily result in greater fecundity, in part because seed production of females was pollen-limited. Over four years in one population, open-pollinated females produced 1.32 more seeds than open-pollinated hermaphrodites (range 1.09–1.63). In two other populations examined for one year only females produced 1.07 and 0.79 as many seeds as hermaphrodites. Seed production of open-pollinated females and hermaphrodites was only 55% and 73% that of cross-pollinated plants, respectively, indicating that both genders were pollen-limited but females more so than hermaphrodites. Open-pollinated seeds from females were 1.18–1.27 times more likely to germinate than seeds from hermaphrodites. No gender differences existed in seedling growth or survival. Hermaphrodites were self-compatible, but selfed seed set was only 80% that of crossed seed set. Crossed seed set of females and hermaphrodites did not differ. Assuming nuclear control of male sterility, relative female fitness is insufficient to maintain females at their current frequencies of 17%, and substantial female fitness advantages at later life-cycle stages are required. Received May 4, 2001 Accepted February 25, 2002  相似文献   

19.
Gynodioecious plant populations contain both hermaphrodite and female individuals. For females to be maintained they must compensate for their loss of reproductive fitness through pollen. Females may achieve compensation by producing more and/or higher quality seeds than hermaphrodites. In this study, I investigated the independent and interactive effects of maternal sexual identity and inbreeding level on fitness of the progeny of hermaphrodites and females of Sidalcea oregana ssp.spicata. Seeds produced by selling hermaphrodites and by outcrossing or sib-crossing hermaphrodites and females, were planted in the field and greenhouse. Maternal-sex effects were substantial at the juvenile stages of the life cycle; seeds of females germinated in higher proportions and produced seedlings that grew significantly faster. Inbreeding effects were manifested primarily at the adult stage of the life cycle. Outcrossed plants were significantly larger and produced more flowers per plant than sib-crossed and selfed plants growing in the greenhouse. Progeny of hermaphrodites and females appeared to respond similarly to sib-matings. The maternal-sex effects observed in Sidalcea may have been related to cytoplasmically inherited factors and could be a driving force in the maintenance of females. Inbreeding depression could play a role in determining the fitness of both sex morphs, if females experience biparental inbreeding in the field. Frequent inbreeding of hermaphrodites may not be necessary to explain the maintenance of gynodioecy in this species.  相似文献   

20.
In many gynodioecious species, sex determination involves both cytoplasmic male‐sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号