首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Concatenated sequences from the plastid-encoded RuBisCo spacer and nuclear-encoded rDNA ITS region of the Alariaceae, Laminariaceae, and Lessoniaceae as currently recognized were used to determine the phylogeny of kelps (Phaeophyceae). Our analyses indicate that all taxa in the Alariaceae, Laminariaceae, and Lessoniaceae form a monophyletic lineage (the Laminariales sensu stricto). The phylogenetic analyses show that the kelps form eight well-supported clades (represented by Egregia, Laminaria, Hedophyllum, Macrocystis, Alaria, Agarum, Ecklonia, and Lessonia) that conform to the tribes of the current morphological classification system of the "advanced" kelps. Our results suggest that the kelps should be classified into eight families rather than the three that are presently used. The interrelationships among the eight lineages were, however, unresolved in the phylogenetic analyses. In all trees, Egregia diverged first and is the sister to the other kelp taxa. Our phylogenetic analyses also indicate that Kjellmaniella and Laminaria do not form a monophyletic group. Taken together, the RuBisCo spacer and rDNA ITS prove useful for understanding the evolutionary history of the advanced kelps and provide a new framework for establishing the systematics of these commercially important brown algae.  相似文献   

2.
Hoplocercine lizards form a clade of 11 currently recognized species traditionally placed in three genera (Enyalioides, Hoplocercus, and Morunasaurus) that occur in the lowlands on both sides of the Andes between Panama and the Brazilian Cerrado. We analyze 11 mitochondrial and two nuclear loci using probabilistic methods and different partitioning strategies to (1) infer the phylogenetic relationships among species of Hoplocercinae, (2) examine amounts of inter- and intraspecific sequence divergence, (3) address monophyly of four species, (4) test previous phylogenetic hypotheses, and (5) estimate divergence times. Our preferred hypothesis places H. spinosus as the sister taxon to all other species of hoplocercines, with M. annularis nested within Enyalioides. Species with multiple samples are monophyletic except for Enyalioides oshaughnessyi, which is paraphyletic relative to an undescribed species of Enyalioides. All previously published phylogenetic hypotheses for hoplocercines are rejected. Monophyly of Enyalioides cannot be rejected and, consequently, the position of Morunasaurus remains unclear. The most recent common ancestor of Hoplocercinae probably occurred east of the Andes; western taxa included in our analyses originated from at least two separate colonizations whether pre- or post-dating vicariance resulting from uplift of the Andes.  相似文献   

3.
We generated a comprehensive phylogeny for the avian families Sturnidae (starlings, mynas, Rhabdornis, oxpeckers, and allies) and Mimidae (mockingbirds, thrashers, and allies) to explore patterns of morphological and behavioral diversification. Reconstructions were based on mitochondrial DNA sequences from five coding genes (4108 bp), and nuclear intron sequences from four loci (2974 bp), for most taxa, supplemented with NDII gene sequences (1041 bp) derived from museum skin specimens from additional taxa; together the 117 sampled taxa comprise 78% of the 151 species in these families and include representatives of all currently or recently recognized genera. Phylogenetic analyses consistently identified nine major clades. The basal lineage is comprised of the two Buphagus oxpeckers, which are presently confined to Africa where they are obligately associated with large mammals. Some species in nearly all of the other major clades also feed on or around large vertebrates, and this association may be an ancestral trait that fostered the world-wide dispersal of this group. The remaining taxa divide into sister clades representing the New-World Mimidae and Old-World Sturnidae. The Mimidae are divided into two subclades, a group of Central American and West Indian catbirds and thrashers, and a pan-American clade of mockingbirds and thrashers. The Sturnidae are subdivided into six clades. The Phillipine endemic Rhabdornis are the sister lineage to a larger and substantially more recent radiation of South Asian and Pacific island starlings and mynas. A clade of largely migratory or nomadic Eurasian starlings (within which the basal lineage is the model taxon Sturnus vulgaris) is allied to three groups of largely African species. These reconstructions confirm that Buphagus should not be included in the Sturnidae, and identify many genera that are not monophyletic. They also highlight the substantial diversity among the major Sturnidae subclades in rates of species accumulation, morphological differentiation, and behavioral variation.  相似文献   

4.
A phylogenetic analysis of plastid DNA sequences from the trn L-F region corroborates the hypothesis that Haemodoraceae, a small monocotyledonous family centred in southwestern Australia, are monophyletic with relationships to Philydraceae, Pontederiaceae and Comme–linaceae. It also supports the long-standing recognition of two subfamilies. In Conostylidoideae Tribonanthes falls in an isolated position, thus supporting its segregation as a recently recognized monogeneric tribe. Tribal status for Phlebocarya is not supported as this taxon is unexpectedly placed in Conostylideae as sister to Conostylis–Blancoa. Macropidia falls as sister to Anigozanthos . The DNA tree permits continued recognition of Macropidia and Blancoa as distinct genera, contrary to a recent morphological cladistic analysis. Haemodoroideae fall into two clades: ( Dilatris(Lachnanthes+Haemodorum )) and ( Xiphidium(Schiekia+Wachendofia )). It is unlikely that Haemodoraceae are of Gondwanan origin, and the phylogenetic pattern indicates a largely relictual distribution with a recent radiation in Western Australia.  相似文献   

5.
Of the three major bilaterian clades, Lophotrochozoa has the greatest diversity and disparity of body forms and is the least understood in terms of phylogenetic history. Within this clade, small nuclear ribosomal subunit (SSU or 18S) studies have failed to provide resolution and other molecular markers have insufficient taxon sampling. To examine relationships within Lophotrochozoa, we collected and complied complete SSU data and nearly complete (>90%) large nuclear ribosomal subunit (LSU or 28S) data totaling approximately 5kb per taxon, for 36 lophotrochozoans. Results of LSU and combined SSU+LSU likelihood analyses provide topologies more consistent with morphological data than analyses of SSU data alone. Namely, most phyla recognized on morphological grounds are recovered as monophyletic entities when the LSU data is considered (contra SSU data alone). These new data show with significant support that "Lophophorata" (traditionally recognized to include Brachiopoda, Phoronida, and Bryozoa) is not a monophyletic entity. Further, the data suggest that Platyzoa is real and may be derived within lophotrochozans rather than a basal or sister taxon. The recently discovered Cycliophora are allied to entoprocts, consistent with their initial placement based on morphology. Additional evidence for Syndermata (i.e., Rotifera+Acanthocephala) is also found. Although relationships among groups with trochophore-like larvae could not be resolved and nodal support values are generally low, the addition of LSU data is a considerable advance in our understanding of lophotrochozoan phylogeny from the molecular perspective.  相似文献   

6.
The genus Arceuthobium (dwarf mistletoes, Viscaceae) comprises 42 species that parasitize hosts in Pinaceae and Cupressaceae in the Old and New Worlds. Maximum parsimony analyses were conducted on two data partitions (separately and combined): nuclear ribosomal internal transcribed spacer (ITS) sequences for all 42 currently recognized species and chloroplast trnT-L-F sequences for 34 New World species. The Old and New World species were phylogenetically distinct using ITS, thus making subgenus Arceuthobium paraphyletic. Arceuthobium pendens and A. guatemalense comprise the basalmost clade of subgenus Vaginata, characterized by the presence of flabellate secondary branching. The trnT-L-F sequences, which vary widely in length depending upon taxon, contain three times less phylogenetic signal than ITS, although homoplasy for this partition is lower. Several of the clades obtained from analysis of nuclear ITS sequences are also recovered using trnT-L-F sequences such as A. guatemalense and A. pendens, the A. rubrum group, the A. vaginatum group, and the A. campylopodum group. The ITS + trnT-L-F tree is well resolved except for four internal nodes. A revised classification of the genus is discussed that recognizes only monophyletic species that are well differentiated by molecular data.  相似文献   

7.
A molecular phylogeny of annelids   总被引:6,自引:0,他引:6  
We present parsimony analyses of annelids based on the largest taxon sample and most extensive molecular data set yet assembled, with two nuclear ribosomal genes (18S rDNA and the D1 region of 28S rDNA), one nuclear protein coding‐gene (Histone H3) and one mitochondrial ribosomal gene (16S rDNA) from 217 terminal taxa. Of these, 267 sequences are newly sequenced, and the remaining were obtained from GenBank. The included taxa are based on the criteria that the taxon must have 18S rDNA or at least two other loci. Our analyses show that 68% of annelid family ranked taxa represented by more than one taxon in our study are supported by a jackknife value > 50%. In spite of the size of our data set, the phylogenetic signal in the deepest part of the tree remains weak and the majority of the currently recognized major polychaete clades (except Amphinomida and Aphroditiformia) could not be recovered. Terbelliformia is monophyletic (with the exclusion of Pectinariidae, for which only 18S data were available), whereas members of taxa such as Phyllodocida, Cirratuliformia, Sabellida and Scolecida are scattered over the trees. Clitellata is monophyletic, although Dinophilidae should possibly be included, and Clitellata has a sister group within the polychaetes. One major problem is the current lack of knowledge on the closest relatives to annelids and the position of the annelid root. We suggest that the poor resolution in the basal parts of the trees presented here may be due to lack of signal connected to incomplete data sets both in terms of terminal and gene sampling, rapid radiation events and/or uneven evolutionary rates and long‐branch attraction. © The Willi Hennig Society 2006.  相似文献   

8.
The Aizoaceae is the largest family of leaf succulent plants, and most of its species are endemic to southern Africa. To evaluate subfamilial, generic, and tribal relationships, we produced two plastid DNA data sets for 91 species of Aizoaceae and four outgroups: rps16 intron and the trnL-F gene region (both the trnL intron and the trnL-F intergenic spacer). In addition, we generated two further plastid data sets for 56 taxa restricted to members of the Ruschioideae using the atpB-rbcL and the psbA-trnH intergenic spacers. In the combined tree of the rps16 intron and trnL-F gene region, three of the currently recognized subfamilies (Sesuvioideae, Mesembryanthemoideae, and Ruschioideae) are each strongly supported monophyletic groups. The subfamily Tetragonioideae is polyphyletic, with Tribulocarpus as sister to the Sesuvioideae and Tetragonia embedded in the Aizooideae. Our study showed that the group consisting of the Sesuvioideae, Aizooideae, and Tetragonioideae does not form a monophyletic entity. Therefore, it cannot be recognized as a separate family in order to accommodate the frequently used concept of the Mesembryanthemaceae or "Mesembryanthema," in which the subfamilies Mesembryanthemoideae and Ruschioideae are included. We also found that several genera within the Mesembryanthemoideae (Mesembryanthemum, Phyllobolus) are not monophyletic. Within the Ruschioideae, our study retrieved four major clades. However, even in the combined analysis of all four plastid gene regions, relationships within the largest of these four clades remain unresolved. The few nucleotide substitutions that exist among taxa of this clade point to a rapid and recent diversification within the arid winter rainfall area of southern Africa. We propose a revised classification for the Aizoaceae.  相似文献   

9.
? Premise of the study: The recognition of monophyletic genera for groups that have high levels of homoplastic morphological characters and/or conflicting results obtained by different studies can be difficult. Such is the case in the grammitid ferns, a clade within the Polypodiaceae. In this study, we aim to resolve relationships among four clades of grammitid ferns, which have been previously recovered either as a polytomy or with conflicting topologies, with the goal of circumscribing monophyletic genera. ? Methods: The sampling included 89 specimens representing 61 species, and sequences were obtained for two genes (atpB and rbcL) and four intergenic spacers (atpB-rbcL, rps4-trnS, trnG-trnR, and trnL-trnF), resulting in a matrix of 5091 characters. The combined data set was analyzed using parsimony, likelihood, and Bayesian methods. Ninety-six morphological characters were optimized onto the generated trees, using the parsimony method. ? Key results: Lellingeria is composed of two main clades, the L. myosuroides and the Lellingeria s.s. clades, which together are sister to Melpomene. Sister to all three of these is a clade with two species of the polyphyletic genus Terpsichore. In the L. myosuroides clade, several dispersal events occurred between the neotropics, Africa, and the Pacific Islands, whereas Lellingeria s.s. is restricted to the neotropics, with about 60% of its diversity in the Andes. ? Conclusions: Overall, our results suggest that Lellingeria is monophyletic, with two clades that are easily characterized morphologically and biogeographically. Morphological characters describing the indument are the most important to define the clades within the ingroup. A small clade, previously considered in Terpsichore, should be recognized as a new genus.  相似文献   

10.
The subtribe Espeletiinae (Asteraceae, Heliantheae) comprises morphologically and ecologically diverse plants endemic to the tropical montane paramos of the Andes of Venezuela, Colombia, and Ecuador. Though the ecophysiology and ecology of this adaptive radiation have been well studied, relationships among taxa in the subtribe and between the subtribe and other taxa in the Heliantheae are poorly known. In this study, sequences from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA are used to test previous hypotheses about the phylogenetic position of the Espeletiinae within the Heliantheae and to determine which taxa are the subtribe's closest relatives. Gene phylogenies based on maximum parsimony analyses reveal that the Espeletiinae clade is nested well within the subtribe Melampodiinae and thus should be considered a monophyletic complex of species, not a separate subtribe. The most parsimonious gene trees suggest that the genus Ichthyothere may be the sister taxon to the Espeletia complex and that the genus Smallanthus and a species of Rumfordia are likely among the complex's other closest living relatives. These data offer preliminary insights into the origins of this adaptive radiation and the broader phylogenetic context in which it occurred.  相似文献   

11.
Recent studies of the phylogeny of several groups of native Hawaiian vascular plants have led to significant insights into the origin and evolution of important elements of the Hawaiian flora. No groups of Hawaiian pteridophytes have been subjected previously to rigorous phylogenetic analysis. We conducted a molecular phylogenetic analysis of the endemic Hawaiian fern genus Adenophorus employing DNA sequence variation from three cpDNA fragments: rbcL, atpbeta, and the trnL-trnF intergenic spacer (IGS). In the phylogenetic analyses we employed maximum parsimony and Bayesian inference. Bayesian phylogenetic inference often provided stronger support for hypothetical relationships than did nonparametric bootstrap analyses. Although phylogenetic analyses of individual DNA fragments resulted in different patterns of relationships among species and varying levels of support for various clades, a combined analysis of all three sets of sequences produced one, strongly supported phylogenetic hypothesis. The primary features of that hypothesis are: (1) Adenophorus is monophyletic; (2) subgenus Oligadenus is paraphyletic; (3) the enigmatic endemic Hawaiian species Grammitis tenella is strongly supported as the sister taxon to Adenophorus; (4) highly divided leaf blades are evolutionarily derived in the group and simple leaves are ancestral; and, (5) the biogeographical origin of the common ancestor of the Adenophorus-G. tenella clade remains unresolved, although a neotropical origin seems most likely.  相似文献   

12.
Species in the genus Tangara are distributed throughout the New World tropics and vary in their morphology, behavior, and ecology. We used data from the cytochrome b and ND 2 genes to provide the first phylogenetic perspective on the evolution of this diversity. Reconstructions based on parsimony, maximum likelihood, and Bayesian approaches were largely congruent. The genus is monophyletic and consists of two main clades. Within these clades, DNA sequence data confirm the monophyly of most previously recognized species groups within Tangara, indicating general concordance between molecular data and impressions based on geographic distribution, morphology, and behavior. Within some currently recognized species, levels of DNA sequence variation are larger than expected, suggesting multiple taxa may be involved. In contrast, some currently recognized species are only weakly differentiated from their sister species. Biogeographic analyses indicate that many early speciation events occurred in the Andes. More recently, dispersal events followed by subsequent speciation have occurred in other geographic areas of the Neotropics. Assuming a molecular clock, most speciation events occurred well before Pleistocene climatic cycles. The time frame of Tangara speciation corresponds more closely to a period of continued uplift in the Andes during the late Miocene and Pliocene.  相似文献   

13.
Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes.  相似文献   

14.
Valerianaceae is a relatively small (ca. 350 species), but morphologically diverse angiosperm clade. Sequence data from the entire ndhF gene, the trnL-F intergenic spacer region, the trnL intron, the matK region, the rbcL-atpB intergenic spacer region and internal transcribed spacer (ITS) region of nuclear ribosomal DNA were collected for 21 taxa within Dipsacaceae and Valerianaceae (1 and 20, respectively). These data were included in several phylogenetic analyses with previously published sequences from Dipsacales. Results from these analyses (maximum parsimony, maximum likelihood, and Bayesian analysis) are in strong agreement with many of the conclusions from previous studies, most importantly: (1) Valerianaceae is sister to Dipsacaceae; (2) Triplostegia is more closely related to species of Dipsacaceae than to Valerianaceae; and (3) Valeriana appears not to be monophyletic, with Valeriana celtica falling outside the remainder of the species of Valeriana sampled here (with very strong support). With the exception of V. celtica, these data support two major clades within Valeriana; one that is exclusively New World and another that is distributed in both the Old and New World. Although the species of Valerianaceae and its sister group Dipsacaceae plus Triplostegia, are widely distributed in the Northern Hemisphere, and the data imply that Valerianaceae diversified initially in Asia (the Himalayan Patrinia and Nardostachys falling at the base of the clade), the center of modern species diversity for the group is in the Andes of South America with as many as 175 species restricted to that region. Although the exclusively South American taxa form a clade in the chloroplast and combined ITS and chloroplast analyses, support values tend to be low. Future studies will need to include additional data, in the form of both characters and taxa, before any strong conclusions about the character evolution, diversification, and biogeography of the South American valerians can be made.  相似文献   

15.
To assess phylogenetic relationships and speciation modes in Closterium , we sequenced two noncoding regions of the nuclear ribosomal cistron, the 1506 group I intron in small subunit and the internal transcribed spacer 2, for a total of 58 strains of the Closterium moniliferum-ehrenbergii species complex. These include both homothallic and heterothallic C. moniliferum Erenberg ex Ralfs v. moniliferum , heterothallic C. moniliferum v. submoniliferum (Woronichin) Krieger, and heterothallic C. ehrenbergii Meneghini ex Ralfs that can be divided into several mating groups. We found no or very little sequence divergence within single mating groups of C. ehrenbergii and among all heterothallic strains of C. moniliferum v. moniliferum or C. moniliferum v. submoniliferum. Nevertheless, sequence divergence was much greater between those mating groups of C. ehrenbergii and also among the three traditional taxa . Maximum parsimony and maximum likelihood analyses showed that the taxon C. ehrenbergii was not monophyletic. The two varieties of C. moniliferum appeared as a sister clade to certain mating groups of C. ehrenbergii . Among the clades that were recovered in different trees by maximum parsimony and maximum likelihood analyses, we consistently found two large conspicuous clades: clade I consisted of mating groups A, B, C, H, K, and L of C. ehrenbergii whose zygospores have smooth-walls, and clade II contained the mating groups D, E, I, J, and S whose zygospores are scrobiculate. Phylogenetic incongruences observed are discussed from the viewpoints of the different molecular nature of the group I intron and internal transcribed spacer 2, as well as putative rapid diversification of the mating groups and probable ancient ancestral hybridization.  相似文献   

16.
Phylogenetic relationships in Cornales were assessed using sequences rbcL and matK. Various combinations of outgroups were assessed for their suitability and the effects of long branches and outgroups on tree topology were examined using RASA 2.4 prior to conducting phylogenetic analyses. RASA identified several potentially problematic taxa having long branches in individual data sets that may have obscured phylogenetic signal, but when data sets were combined RASA no longer detected long branch problems. t(RASA) provides a more conservative measurement for phylogenetic signal than the PTP and skewness tests. The separate matK and rbcL sequence data sets were measured as not containing phylogenetic signal by RASA, but PTP and skewness tests suggested the reverse [corrected]. Nonetheless, the matK and rbcL sequence data sets suggested relationships within Cornales largely congruent with those suggested by the combined matK-rbcL sequence data set that contains significant phylogenetic signal as measured by t(RASA), PTP, and skewness tests. Our analyses also showed that a taxon having a long branch on the tree may not be identified as a "long-branched" taxon by RASA. The long branches identified by RASA had little effect on the arrangement of other taxa in the tree, but the placements of the long-branched taxa themselves were often problematic. Removing the long-branched taxa from analyses generally increased bootstrap support, often substantially. Use of non-optimal outgroups (as identified by RASA) decreased phylogenetic resolution in parsimony analyses and suggested different relationships in maximum likelihood analyses, although usually weakly supported clades (less than 50% support) were impacted. Our results do not recommend using t(RASA) as a sole criterion to discard data or taxa in phylogenetic analyses, but t(RASA) and the taxon variance ratio obtained from RASA may be useful as a guide for improved phylogenetic analyses. Results of parsimony and ML analyses of the sequence data using optimal outgroups suggested by RASA revealed four major clades within Cornales: (1) Curtisia-Grubbia, (2) Cornus-Alangium, (3) Nyssa-Camptotheca-Davidia-Mastixia-Diplopanax, and (4) Hydrangeaceae-Loasaceae, with clades (2) and (3) forming a monophyletic group sister to clade (4) and clade (1) sister to the remainder of Cornales. However, there was not strong bootstrap support for relationships among the major clades. The placement of Hydrostachys could not be reliably determined, although most analyses place the genus within Hydrangeaceae; ML analyses, for example, placed the genus as the sister of Hydrangeeae. Our results supported a Cornales including the systematically problematic Hydrostachys, a Cornaceae consisting of Cornus and Alangium, a Nyssaceae consisting of Nyssa and Camptotheca, a monogeneric Davidiaceae, a Mastixiaceae consisting of Mastixia and Diplopanax, and an expanded Grubbiaceae consisting of Grubbia and Curtisia, and two larger families, Hydrangeaceae and Loasaceae.  相似文献   

17.
The South American iguanian lizard genus Stenocercus includes 54 species occurring mostly in the Andes and adjacent lowland areas from northern Venezuela and Colombia to central Argentina at elevations of 0-4000m. Small taxon or character sampling has characterized all phylogenetic analyses of Stenocercus, which has long been recognized as sister taxon to the Tropidurus Group. In this study, we use mtDNA sequence data to perform phylogenetic analyses that include 32 species of Stenocercus and 12 outgroup taxa. Monophyly of this genus is strongly supported by maximum parsimony and Bayesian analyses. Evolutionary relationships within Stenocercus are further analyzed with a Bayesian implementation of a general mixture model, which accommodates variability in the pattern of evolution across sites. These analyses indicate a basal split of Stenocercus into two clades, one of which receives very strong statistical support. In addition, we test previous hypotheses using non-parametric and parametric statistical methods, and provide a phylogenetic classification for Stenocercus.  相似文献   

18.
One hundred and seventeen clades of euagarics   总被引:23,自引:0,他引:23  
This study provides a first broad systematic treatment of the euagarics as they have recently emerged in phylogenetic systematics. The sample consists of 877 homobasidiomycete taxa and includes approximately one tenth (ca. 700 species) of the known number of species of gilled mushrooms that were traditionally classified in the order Agaricales. About 1000 nucleotide sequences at the 5(') end of the nuclear large ribosomal subunit gene (nLSU) were produced for each taxon. Phylogenetic analyses of nucleotide sequence data employed unequally weighted parsimony and bootstrap methods. Clades revealed by the analyses support the recognition of eight major groups of homobasidiomycetes that cut across traditional lines of classification, in agreement with other recent phylogenetic studies. Gilled fungi comprise the majority of species in the euagarics clade. However, the recognition of a monophyletic euagarics results in the exclusion from the clade of several groups of gilled fungi that have been traditionally classified in the Agaricales and necessitates the inclusion of several clavaroid, poroid, secotioid, gasteroid, and reduced forms that were traditionally classified in other basidiomycete orders. A total of 117 monophyletic groups (clades) of euagarics can be recognized on the basis on nLSU phylogeny. Though many clades correspond to traditional taxonomic groups, many do not. Newly discovered phylogenetic affinities include for instance relationships of the true puffballs (Lycoperdales) with Agaricaceae, of Panellus and the poroid fungi Dictyopanus and Favolaschia with Mycena, and of the reduced fungus Caripia with Gymnopus. Several clades are best supported by ecological, biochemical, or trophic habits rather than by morphological similarities.  相似文献   

19.
This is the first molecular study to trace the evolutionary transition in substrate preference across a primate radiation. We surveyed 20 guenons (tribe Cercopithecini) and 4 outgroup taxa for two Y-chromosomal genes, TSPY ( approximately 2240 bp) and SRY ( approximately 780 bp), and one X-chromosomal intergenic region ( approximately 1600 bp) homologous to a fragment of human Xq13.3. Parsimony and maximum likelihood analyses of the sex chromosomal datasets consistently cluster the three terrestrial taxa, Cercopithecus aethiops, Cercopithecus lhoesti, and Erythrocebus patas, into a group that is reciprocally monophyletic with a clade of arboreal Cercopithecus spp. Given that the common ancestor of the two clades was most likely an arboreal taxon, this phylogenetic pattern suggests the transition to terrestriality occurred only once among the extant guenons. This pattern also indicates that the genus Cercopithecus is paraphyletic, as presently defined, and calls for taxonomic revision so that the nomen describes a strictly monophyletic group. We outline four acceptable taxonomic schemes and suggest that the most appropriate is to reassign C. aethiops, C. lhoesti, and E. patas to the resurrected genus Chlorocebus. Finally, while the phylogeny and taxonomy of terrestrial guenons were the focus of this study, the X-chromosome sequences presented here represent the first molecular evidence to unambiguously place Allenopithecus nigroviridis as the basal lineage of the tribe Cercopithecini.  相似文献   

20.
Intra- and interspecific phylogenetic relationships of the rare serpentine endemic taxon Caulanthus amplexicaulus var. barbarae and related taxa in the "Streptanthoid Complex" of genera (Streptanthus, Caulanthus, Guillenia) were examined using nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL intron sequences. Phylogenetic hypotheses generated from 81 variable ITS nucleotide sites and six variable trnL nucleotide sites indicate that Streptanthus and Caulanthus are nonmonophyletic groups. Caulanthus amplexicaulis var. barbarae and its more widespread nonserpentine sister taxon Caulanthus amplexicaulis var. amplexicaulis formed a distinct monophyletic group. Among the taxa in our study, C. amplexicaulis was most closely related to Streptanthus tortuosus. The ITS sequences supported monophyly of subgenus Euclesia, which includes the bulk of the serpentine endemics in the Streptanthoid Complex. The serpentine taxa were nonmonophyletic, occurring in at least three distinct clades, suggesting that tolerance to serpentine may be gained or lost through relatively few genetic changes. Intraspecific ITS1 and ITS2 sequence divergence within C. amplexicaulis (1.3-1.8%) was higher than in comparable species (0.0-0.3%); implications of this genetic differentiation for the conservation status of C. amplexicaulis var. barbarae are discussed. Evidence is presented that supports a "biotype depletion" model for the origin of this rare endemic taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号