首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Familial, subfamilial, and tribal monophyly and relationships of aroids and duckweeds were assessed by parsimony and Bayesian phylogenetic analyses of five regions of coding (rbcL, matK) and noncoding plastid DNA (partial trnK intron, trnL intron, trnL-trnF spacer) for exemplars of nearly all aroid and duckweed genera. Our analyses confirm the position of Lemna and its allies (formerly Lemnaceae) within Araceae as the well-supported sister group of all aroids except Gymnostachydoideae and Orontioideae. The last two subfamilies form the sister clade of the rest of the family. Monophyly of subfamilies Orontioideae, Pothoideae, Monsteroideae, and Lasioideae is supported, but Aroideae are paraphyletic if Calla is maintained in its own subfamily (Calloideae). Our results suggest expansion of the recently proposed subfamily Zamioculcadoideae (Zamioculcas, Gonatopus) to include Stylochaeton and identify problems in the current delimitation of tribes Anadendreae, Heteropsideae, and Monstereae (Monsteroideae), Caladieae/Zomicarpeae, and Colocasieae (Aroideae). Canalization of traits of the spathe and spadix considered typical of Araceae evolved after the split of Gymnostachydoideae, Orontioideae, and Lemnoideae. An association with aquatic habitats is a plesiomorphic attribute in Araceae, occurring in the helophytic Orontioideae and free-floating Lemnoideae, but evolving independently in various derived aroid lineages including free-floating Pistia (Aroideae).  相似文献   

2.

Premise

Recent phylogenetic studies of the Araceae have confirmed the position of the duckweeds nested within the aroids, and the monophyly of a clade containing all the unisexual flowered aroids plus the bisexual-flowered Calla palustris. The main objective of the present study was to better resolve the deep phylogenetic relationships among the main lineages within the family, particularly the relationships between the eight currently recognized subfamilies. We also aimed to confirm the phylogenetic position of the enigmatic genus Calla in relation to the long-debated evolutionary transition between bisexual and unisexual flowers in the family.

Methods

Nuclear DNA sequence data were generated for 128 species across 111 genera (78%) of Araceae using target sequence capture and the Angiosperms 353 universal probe set.

Results

The phylogenomic data confirmed the monophyly of the eight Araceae subfamilies, but the phylogenetic position of subfamily Lasioideae remains uncertain. The genus Calla is included in subfamily Aroideae, which has also been expanded to include Zamioculcadoideae. The tribe Aglaonemateae is newly defined to include the genera Aglaonema and Boycea.

Conclusions

Our results strongly suggest that new research on African genera (Callopsis, Nephthytis, and Anubias) and Calla will be important for understanding the early evolution of the Aroideae. Also of particular interest are the phylogenetic positions of the isolated genera Montrichardia, Zantedeschia, and Anchomanes, which remain only moderately supported here.  相似文献   

3.
Analysis of stem vasculature in representatives of subfamily Monsteroideae (Araceae) by cinematographic techniques based on serial sections shows three main patterns of organization. One group of five genera (Rhaphidophora, Epipremnum, Amydrium, Scindapsus, Monstera) is characterized by simple vascular bundles and axial bundles which are derived by basal aggregation of small bundles branching from existing axial bundles. Another group of two genera (Stenospermation, Rhodospatha) is characterized by compound vascular bundles which are made by rather irregular association of individual collateral bundles. These two groups correspond to the tribe Monstereae. The last group which corresponds to the tribe Spathiphylleae includes two genera (Spathiphyllum, Holochlamys) with amphivasal vascular bundles which are highly condensed and irregularly anastomosing. In part, this division is correlated with habit and habitat. Some members of the first group resemble genera within the subfamily Pothoideae quite closely and indicate that the two subfamilies are not clearly circumscribed. Compound bundles in Rhodospatha and Stenospermation do not have the precise organization previously reported for the Pandanaceae.  相似文献   

4.
The family Syrphidae (Diptera) is traditionally divided into three subfamilies. The aim of this study was to address the monophyly of the tribes within the subfamily Syrphinae (virtually all with predaceous habits), as well as the phylogenetic placement of particular genera using molecular characters. Sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I ( COI ) and the nuclear 28S ribosomal RNA gene of 98 Syrphinae taxa were analyzed using optimization alignment to explore phylogenetic relationships among included taxa. Volucella pellucens was used as outgroup, and representatives of the tribe Pipizini (Eristalinae), with similar larval feeding mode, were also included. Congruence of our results with current tribal classification of Syrphinae is discussed. Our results include the tribe Toxomerini resolved as monophyletic but placed in a clade with genera Ocyptamus and Eosalpingogaster . Some genera traditionally placed into Syrphini were resolved outside of this tribe, as the sister groups to other tribes or genera. The tribe Bacchini was resolved into several different clades. We recovered Paragini as a monophyletic group, and sister group of the genus Allobaccha . The present results highlight the need of a reclassification of Syrphinae.
© The Willi Hennig Society 2008.  相似文献   

5.
The Asteraceae are commonly divided into two large subfamilies, the Cichorioideae (syn. Lactucoideae; Mutisieae, Cardueae, Lactuceae, Vernonieae, Liabeae, Arctoteae) and the Asteroideae (Inuleae, Astereae, Anthemideae, Senecioneae, Calenduleae, Heliantheae, Eupatorieae). Recent phylogenetic analyses based on morphological and chloroplast DNA data conclusively show that the Mutisieae-Barnadesiinae are the sister group to the rest of the family and that the Asteroideae tribes form a monophyletic group. The Vernonieae and Liabeae are sister tribes and the Eupatorieae are nested within a paraphyletic Heliantheae; otherwise tribal interrelationships are still largely uncertain. The Mutisieae-Barnadesiinae are excluded from the Mutisieae and elevated to the new subfamily Barnadesioideae. The two subfamilies Barnadesioideae and Asteroideae are monophyletic, whereas the status of the Cichorioideae remains uncertain. Analyses of chloroplast DNA data support the monophyly of the Cichorioideae; however, morphological data indicate that the subfamily is paraphyletic. Further studies are needed to test the monophyly of the Cichorioideae, as well as to further resolve tribal interrelationships in the two larger subfamilies.  相似文献   

6.
中国天南星科花粉形态的研究   总被引:5,自引:0,他引:5  
利用扫描电镜对天南星科Araceae22属28种(除Arum maculatum产自德国外,其余均产自中国) 及菖蒲科Acoraceae 1属2种植物的花粉形态进行了观察。结果显示天南星科花粉形态在科内变异很 大。花粉粒形状从球形、近球形、椭球形到扁球形和橄榄形;萌发孔类型有散孔型、具薄壁区型、环沟型 或无萌发孔;外壁纹饰为小穴状、网状、肋条状、条纹状、疣状、具刺或光滑。主要依据花粉形态方面的证 据探讨了崖角藤属Rhaphidophora、麒麟叶属Epipremnam 、龟背竹属Monstera 3属的属间关系以及犁头尖属Typhonium属下分类中存在的一些问题。  相似文献   

7.
Plastid matK and a fragment of the low-copy nuclear gene PHYC were sequenced for 30 genera of Phyllanthaceae to evaluate tribal and generic delimitation. Resolution and bootstrap percentages obtained with matK are higher than that of PHYC, but both regions show nearly identical phylogenetic patterns. Phylogenetic relationships inferred from the independent and combined data are congruent and differ from previous, morphology-based classifications but are highly concordant with those of the plastid gene rbcL previously published. Phyllanthaceae is monophyletic and gives rise to two well-resolved clades (T and F) that could be recognized as subfamilies. DNA sequence data for Keayodendron and Zimmermanniopsis are presented for the first time. Keayodendron is misplaced in tribe Phyllantheae and belongs to the Bridelia alliance. Zimmermanniopsis is sister to Zimmermannia. Phyllanthus and Cleistanthus are paraphyletic. Savia and Phyllanthus subgenus Kirganelia are not monophyletic.  相似文献   

8.
9.
This study examined subfamilial relationships within Braconidae, using 4 kb of sequence data for 139 taxa. Genetic sampling included previously used markers for phylogenetic studies of Braconidae (28S and 18S rDNA) as well as new nuclear protein‐coding genes (CAD and ACC). Maximum likelihood and Bayesian inference of the concatenated dataset recovered a robust phylogeny, particularly for early divergences within the family. This study focused primarily on non‐cyclostome subfamilies, but the monophyly of the cyclostome complex was strongly supported. There was evidence supporting an independent clade, termed the aphidioid complex, as sister to the cyclostome complex of subfamilies. Maxfischeria was removed from Helconinae and placed within its own subfamily within the aphidioid complex. Most relationships within the cyclostome complex were poorly supported, probably because of lower taxonomic sampling within this group. Similar to other studies, there was strong support for the alysioid subcomplex containing Gnamptodontinae, Alysiinae, Opiinae and Exothecinae. Cenocoeliinae was recovered as sister to all other subfamilies within the euphoroid complex. Planitorus and Mannokeraia, previously placed in Betylobraconinae and Masoninae, respectively, were moved to the Euphorinae, and may share a close affiliation with Neoneurinae. Neoneurinae and Ecnomiinae were placed as tribes within Euphorinae. A sister relationship between the microgastroid and sigalphoid complexes was also recovered. The helconoid complex included a well‐supported lineage that is parasitic on lepidopteran larvae (macrocentroid subcomplex). Helconini was raised to subfamily status, and was recovered as sister to the macrocentroid subcomplex. Blacinae was demoted to tribal status and placed within the newly circumscribed subfamily Brachistinae, which also contains the tribes Diospilini, Brulleiini and Brachistini, all formerly in Helconinae.  相似文献   

10.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

11.
We explore the phylogenetic relationships of fantails (Aves: Rhipiduridae) using molecular characters derived from two nuclear introns and two mitochondrial genes. Our results indicate that Rhipidura hypoxantha is not a true fantail, but rather a member of the Stenostiridae clade that is morphologically and behaviourally convergent with fantails. Within the true Rhipiduridae, we identified six distinct clades; however, phylogenetic relationships among these groups were unresolved. The only well-supported sister relationship was between members of the grey and the rufous fantail complexes. Clades recovered through our model-based phylogenetic analyses generally correspond to previously proposed fantail complexes based on morphological characters. The phylogenetic position of R. atra and R. diluta remain unclear, as sister relationships varied between analyses for the prior whereas the latter was placed as sister to the New Guinea thicket fantails, R. leucothorax and R. threnothorax ; yet significant node support was not recovered for either taxa. Biogeographically, fantails appear to have radiated rapidly and the six clades are not geographically restricted, but instead span South-east Asia, New Guinea, Australia and Pacific Islands.  相似文献   

12.
Martialinae are pale, eyeless and probably hypogaeic predatory ants. Morphological character sets suggest a close relationship to the ant subfamily Leptanillinae. Recent analyses based on molecular sequence data suggest that Martialinae are the sister group to all extant ants. However, by comparing molecular studies and different reconstruction methods, the position of Martialinae remains ambiguous. While this sister group relationship was well supported by Bayesian partitioned analyses, Maximum Likelihood approaches could not unequivocally resolve the position of Martialinae. By re-analysing a previous published molecular data set, we show that the Maximum Likelihood approach is highly appropriate to resolve deep ant relationships, especially between Leptanillinae, Martialinae and the remaining ant subfamilies. Based on improved alignments, alignment masking, and tree reconstructions with a sufficient number of bootstrap replicates, our results strongly reject a placement of Martialinae at the first split within the ant tree of life. Instead, we suggest that Leptanillinae are a sister group to all other extant ant subfamilies, whereas Martialinae branch off as a second lineage. This assumption is backed by approximately unbiased (AU) tests, additional Bayesian analyses and split networks. Our results demonstrate clear effects of improved alignment approaches, alignment masking and data partitioning. We hope that our study illustrates the importance of thorough, comprehensible phylogenetic analyses using the example of ant relationships.  相似文献   

13.
The phylogenetic relationships among the three subfamilies (Salmoninae, Coregoninae and Thymallinae) in the Salmonidae have not been addressed extensively at the molecular level. In this study, the whole mitochondrial genomes of two Thymallinae species, Thymallus arcticus and Thymallus thymallus were sequenced, and the published mitochondrial genome sequences of other salmonids were used for Bayesian and maximum‐likelihood phylogenetic analyses. These results support an ancestral Coregoninae, branching within the Salmonidae, with Thymallinae as the sister group to Salmoninae.  相似文献   

14.
分子系统学研究将传统梧桐科与锦葵科、木棉科和椴树科合并为广义锦葵科,并进一步分为9个亚科.然而,9个亚科之间的关系尚未完全明确,且梧桐亚科内的属间关系也未得到解决.为了明确梧桐亚科在锦葵科中的系统发育位置,厘清梧桐亚科内部属间系统发育关系,该研究对锦葵科8个亚科进行取样,共选取55个样本,基于叶绿体基因组数据,采用最大...  相似文献   

15.
16.
17.
Cladistic analyses were carried out to infer the phylogenetic relationships among taxa that were originally part of the large genus Eumenes. Terminals belonging to other eumenine lineages were also included, as well as terminals from other vespid subfamilies. Analyses under equal weights and implied weights were carried out, and better results were obtained with the latter. The results corroborated the monophyly of Eumeninae, and recovered Zethini sensu lato as the sister‐lineage to the remaining eumenines. Eumenes sensu lato as originally recognized is paraphyletic relative to Odynerus sensu lato. A natural classification at the tribal level congruent with the phylogenetic results may be proposed, and the names Zethini, Odynerini, and Eumenini are already available. This is the most comprehensive phylogeny of the Eumeninae to date. A new generic synonymy is Alfieria Giordani Soika, 1934 = Delta de Saussure, 1855.  相似文献   

18.
Abstract. Phylogenetic relationships among tribes in the tachinid subfamily Exoristinae (Diptera, Tachinidae) are inferred from four genes, namely white, 18S, 28S and 16S rDNA. For phylogenetic inferences, maximum parsimony, maximum likelihood and Bayesian Markov chain Monte Carlo analyses were performed. The resultant, very similar, trees are nearly concordant with the traditional classification based on morphological characters. Our results suggest that the Tachinidae are monophyletic and sister to the Sarcophagidae. The tribal relationships within Exoristinae are supported in part with high reliabilities and are similar to those inferred by Stireman. Based on the resultant trees, the phylogenetic relationships and possible morphological synapomorphies were investigated. In addition, we evaluated the transformation of female reproductive habits in the Exoristinae, finding support for the hypothesis that ovolarviparity evolved independently from oviparity in several clades, and obtaining different results concerning the evolutionary history of micro‐ovolarviparity depending on character optimization.  相似文献   

19.
Abstract Phylogenetic relationships of Pamphagidae were examined using cytochrome oxidase subunit II (COII) mtDNA sequences (684 bp). Twenty‐seven species of Acridoidea from 20 genera were sequenced to obtain mtDNA data, along with four species from the GenBank nucleotide database. The purpose of this study was analyzing the phylogenetic relationships among subfamilies within Pamphagidae and interpreting the phylogenetic position of this family within the Acridoidea superfamily. Phylogenetic trees were reconstructed using neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian inference (BI) methods. The 684 bp analyzed fragment included 126 parsimony informative sites. Sequences diverged 1.0%–11.1% between genera within subfamilies, and 8.8%–12.3% between subfamilies. Amino acid sequence diverged 0–6.1% between genera within subfamilies, and 0.4%–7.5% between subfamilies. Our phylogenetic trees revealed the monophyly of Pamphagidae and three distinct major groups within this family. Moreover, several well supported and stable clades were found in Pamphagidae. The global clustering results were similar to that obtained through classical morphological classification: Prionotropisinae, Thrinchinae and Pamphaginae were monophyletic groups. However, the current genus Filchnerella (Prionotropisinae) was not a monophyletic group and the genus Asiotmethis (Prionotropisinae) was a sister group of the genus Thrinchus (Thrinchinae). Further molecular and morphological studies are required to clarify the phylogenetic relationships of the genera Filchnerella and Asiotmethis.  相似文献   

20.
Past phylogenetic studies of the monocot order Alismatales left several higher‐order relationships unresolved. We addressed these uncertainties using a nearly complete genus‐level sampling of whole plastid genomes (gene sets representing 83 protein‐coding and ribosomal genes) from members of the core alismatid families, Tofieldiaceae and additional taxa (Araceae and other angiosperms). Parsimony and likelihood analyses inferred generally highly congruent phylogenetic relationships within the order, and several alternative likelihood partitioning schemes had little impact on patterns of clade support. All families with multiple genera were resolved as monophyletic, and we inferred strong bootstrap support for most inter‐ and intrafamilial relationships. The precise placement of Tofieldiaceae in the order was not well supported. Although most analyses inferred Tofieldiaceae to be the sister‐group of the rest of the order, one likelihood analysis indicated a contrasting Araceae‐sister arrangement. Acorus (Acorales) was not supported as a member of the order. We also investigated the molecular evolution of plastid NADH dehydrogenase, a large enzymatic complex that may play a role in photooxidative stress responses. Ancestral‐state reconstructions support four convergent losses of a functional NADH dehydrogenase complex in Alismatales, including a single loss in Tofieldiaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号