首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distinctive gymnosperm genus Ephedra is sometimes considered to have originated over 200 million years (Myr) ago on the basis of "ephedroid" fossil pollen. In this article we estimate the age of extant Ephedra using chloroplast rbcL gene sequences. Relative rate tests fail to reject the null hypothesis of equal rates of nucleotide substitution of the rbcL sequences among three landmark lineages (Gnetales, Pinaceae, and Ginkgo). The most divergent sequences we have found in Ephedra differ by only 7 bp for an 1,110 bp region of rbcL sequence, whereas the differences among genera range from 92 to 107 bp in Gnetales and from 35 to 92 bp in Pinaceae. Using three landmark events, the age of extant Ephedra is estimated to be approximately 8-32 Myr. Our result is consistent with the current distribution of many Ephedra species in geologically recent habitats and points out difficulties in the identification of older ephedroid pollen fossils with the modern genus Ephedra.  相似文献   

2.
The ndhF sequences of 99 taxa, representing all sections in extant Magnoliaceae, were analyzed to address phylogenetic questions in the family. Magnolia macrophylla and M. dealbata, North American species of Magnolia section Rytidospermum, are placed at the base in the subfamily Magnolioideae although its supporting value is low. In the remaining taxa, several distinctive lineages are recognized: (1) Magnolia, the biggest genus in the family, is not monophyletic; (2) Michelia, including section Maingola of Magnolia subgenus Magnolia, is closely related with Elmerrillia and sections Alcimandra and Aromadendron of Magnolia subgenus Magnolia; (3) the associates of Michelia are grouped with Magnolia subgenus Yulania and section Gynopodium of Magnolia subgenus Magnolia; (4) Pachylarnax forms a clade with sections Manglietiastrum and Gynopodium of Magnolia; (5) a well-supported Manglietia clade is recognized; (6) Caribbean species of section Theorhodon of Magnolia subgenus Magnolia, which are section Splendentes sensu Vázquez-Garcia, are closely allied with New World members of Magnolia subgenus Talauma; and (7) section Rytidospermum of Magnolia subgenus Magnolia and subgenus Talauma are polyphyletic. The separated clades in the molecular tree are considerably different from traditional taxonomic dispositions in the family. The molecular data strongly suggest that a taxonomic realignment of infrafamilial delimitations and compositions should be considered.  相似文献   

3.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   

4.
Sequences from 14 slowly evolving chloroplast genes (including three highly conserved introns) were obtained for representative basal angiosperm and seed-plant taxa, using novel primers described here. These data were combined with published sequences from atpB, rbcL, and newly obtained sequences from ndhF. Combined data from these 17 genes permit sturdy, well-resolved inference of major aspects of basal angiosperm relationships, demonstrating that the new primers are valuable tools for sorting out the deepest events in flowering plant phylogeny. Sequences from the inverted repeat (IR) proved to be particularly reliable (low homoplasy, high retention index). Representatives of Cabomba and Illicium were the first two successive branches of the angiosperms in an initial sampling of 19 exemplar taxa. This result was strongly supported by bootstrap analysis and by two small insertion/deletion events in the slowly evolving introns. Several paleoherb groups (representatives of Piperales) formed a strongly supported clade with taxa representing core woody magnoliids (Laurales, Magnoliales, and Winteraceae). The monophyly of the sampled eudicots and monocots was also well supported. Analyses of three major partitions of the data showed many of the same clades and supported the rooting seen with all the data combined. While Amborella trichopoda was supported as the sister group of the remaining angiosperms when we added Amborella and Nymphaea odorata to the analysis, a strongly conflicting rooting was observed when Amborella alone was added.  相似文献   

5.
Magnoliales, consisting of six families of tropical to warm-temperate woody angiosperms, were long considered the most archaic order of flowering plants, but molecular analyses nest them among other eumagnoliids. Based on separate and combined analyses of a morphological matrix (115 characters) and multiple molecular data sets (seven variable chloroplast loci and five more conserved genes; 14 536 aligned nucleotides), phylogenetic relationships were investigated simultaneously within Magnoliales and Myristicaceae, using Laurales, Winterales, and Piperales as outgroups. Despite apparent conflicts among data sets, parsimony and maximum likelihood analyses of combined data converged towards a fully resolved and well-supported topology, consistent with higher-level molecular analyses except for the position of Magnoliaceae: Myristicaceae + (Magnoliaceae + (( Degeneria + Galbulimima ) + ( Eupomatia + Annonaceae))). Based on these results, we discuss morphological evolution in Magnoliales and show that several supposedly plesiomorphic traits are synapomorphies of Magnoliineae, the sister group of Myristicaceae (e.g. laminar stamens). Relationships within Annonaceae are also resolved with strong support ( Anaxagorea basal, then ambavioids). In contrast, resolution of relationships within Myristicaceae is difficult and still incomplete, due to a very low level of molecular divergence within the family and a long stem lineage. However, our data provide good evidence that Mauloutchia is nested among other Afro-Malagasy genera, contradicting the view that its androecium and pollen are plesiomorphic  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 125–186.  相似文献   

6.
We used a unique combination of techniques to sequence the first complete chloroplast genome of a lycophyte, Huperzia lucidula. This plant belongs to a significant clade hypothesized to represent the sister group to all other vascular plants. We used fluorescence-activated cell sorting (FACS) to isolate the organelles, rolling circle amplification (RCA) to amplify the genome, and shotgun sequencing to 8× depth coverage to obtain the complete chloroplast genome sequence. The genome is 154,373 bp, containing inverted repeats of 15,314 bp each, a large single-copy region of 104,088 bp, and a small single-copy region of 19,657 bp. Gene order is more similar to those of mosses, liverworts, and hornworts than to gene order for other vascular plants. For example, the Huperzia chloroplast genome possesses the bryophyte gene order for a previously characterized 30 kb inversion, thus supporting the hypothesis that lycophytes are sister to all other extant vascular plants. The lycophyte chloroplast genome data also enable a better reconstruction of the basal tracheophyte genome, which is useful for inferring relationships among bryophyte lineages. Several unique characters are observed in Huperzia, such as movement of the gene ndhF from the small single copy region into the inverted repeat. We present several analyses of evolutionary relationships among land plants by using nucleotide data, inferred amino acid sequences, and by comparing gene arrangements from chloroplast genomes. The results, while still tentative pending the large number of chloroplast genomes from other key lineages that are soon to be sequenced, are intriguing in themselves, and contribute to a growing comparative database of genomic and morphological data across the green plants.  相似文献   

7.
Following (1) the large-scale molecular phylogeny of seed plants based on plastid rbcL gene sequences (published in 1993 by Chase et al., Ann. Missouri Bot. Gard. 80:528-580) and (2) the 18S nuclear phylogeny of flowering plants (published in 1997 by Soltis et al., Ann. Missouri Bot. Gard. 84:1-49), we present a phylogenetic analysis of flowering plants based on a second plastid gene, atpB, analyzed separately and in combination with rbcL sequences for 357 taxa. Despite some discrepancies, the atpB-based phylogenetic trees were highly congruent with those derived from the analysis of rbcL and 18S rDNA, and the combination of atpB and rbcL DNA sequences (comprising approximately 3000 base pairs) produced increased bootstrap support for many major sets of taxa. The angiosperms are divided into two major groups: noneudicots with inaperturate or uniaperturate pollen (monocots plus Laurales, Magnoliales, Piperales, Ceratophyllales, and Amborellaceae-Nymphaeaceae-Illiciaceae) and the eudicots with triaperturate pollen (particularly asterids and rosids). Based on rbcL alone and atpB/rbcL combined, the noneudicots (excluding Ceratophyllum) are monophyletic, whereas in the atpB trees they form a grade. Ceratophyllum is sister to the rest of angiosperms with rbcL alone and in the combined atpB/rbcL analysis, whereas with atpB alone, Amborellaceae, Nymphaeaceae, and Illiciaceae/Schisandraceae form a grade at the base of the angiosperms. The phylogenetic information at each codon position and the different types of substitutions (observed transitions and transversions in the trees vs. pairwise comparisons) were examined; taking into account their respective consistency and retention indices, we demonstrate that third-codon positions and transitions are the most useful characters in these phylogenetic reconstructions. This study further demonstrates that phylogenetic analysis of large matrices is feasible.  相似文献   

8.
9.
Amplification and analysis of Miocene plant fossil DNA.   总被引:3,自引:0,他引:3  
Ancient DNA has been extracted and sequenced from several animal and plant specimens. Previous considerations of the damage to ancient DNA have suggested that both the age and size of DNA fragments that can be retrieved and sequenced may be limited, the former to between several thousand and at most tens of thousands of years old, and the latter to at most a few hundred bases. A recent report of a 770 base pair (b.p.) sequence from the chloroplast gene rbcL from a Miocene Magnolia latahensis leaf indicates that both estimated limitations may be too conservative. Further work has indicated that analysis of Miocene fossil DNA can be replicated, and can, therefore, open up the prospects for future development of the field of molecular palaeontology. Successful amplification of fossil DNA is sometimes confounded by factors inherent to fossil DNA or to samples with minimal amounts of target DNA. Techniques that alter denaturation, reduce inhibitors and the problem of contaminants, and repair DNA prior to polymerase chain reaction amplification can increase the probability of success.  相似文献   

10.
Over the past 25 years, discoveries of Early Cretaceous fossil flowers, often associated with pollen and sometimes with vegetative parts, have revolutionized our understanding of the morphology and diversity of early angiosperms. However, few of these fossils have been integrated into the increasingly robust phylogeny of living angiosperms based primarily on molecular data. To remedy this situation, we have used a morphological dataset for living basal angiosperms (including basal eudicots and monocots) to assess the most parsimonious positions of early angiosperm fossils on cladograms of Recent plants, using constraint trees that represent the current range of hypotheses on higher-level relationships, and concentrating on Magnoliidae (the clade including Magnoliales, Laurales, Canellales, and Piperales) and eudicots. In magnoliids, our results confirm proposed relationships of Archaeanthus (latest Albian?) to Magnoliaceae, Endressinia (late Aptian) to Magnoliales (the clade comprising Degeneria, Galbulimima, Eupomatia, and Annonaceae), and Walkeripollis pollen tetrads (late Barremian?) to Win-teraceae, but they indicate that Mauldinia (early Cenomanian) was sister to both Lauraceae and Hernandiaceae rather than to Lauraceae alone. Among middle Albian to early Cenomanian eudicots, we confirm relationships of Nelumbites to Nelumbo, platanoid inflorescences and Sapindopsis to Platanaceae, and Spanomera to Buxaceae. With the possible exception of Archaeanthus, these fossils are apparently not crown group members of living families but rather stem relatives of one or more families.  相似文献   

11.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   

12.
Phylogenetic data from plastid (ndhF and rbcL) and nuclear (PHYC) genes indicate that, within the order Malpighiales, Elatinaceae are strongly supported as sister to Malpighiaceae. There are several putative morphological synapomorphies for this clade; most notably, they both have a base chromosome number of X = 6 (or some multiple of three or six), opposite or whorled leaves with stipules, unicellular hairs (also uniseriate in some Elatinaceae), multicellular glands on the leaves, and resin (Elatinacae) or latex (Malpighiaceae). Further study is needed to determine if these features are synapomorphic within the order. Malpighiaceae have previously been inferred as sister to Peridiscaceae based on rbcL sequence data, but the rbcL sequence of Whittonia is a chimera of two sequences, neither of which appears to be Whittonia. Our data from plastid (atpB, rbcL) and nuclear (18S rDNA) genes instead place Peridiscaeace as a member of the Saxifragales.  相似文献   

13.
Partial sequences (1032 bp) of the nuclear-encoded large ribosomal RNA gene (LSU) were determined for 16 gelidialean species, and analyzed separately and in combination with plastid rbcL and nuclear SSU gene sequences. The number of informative characters and levels of sequence divergence among taxa are intermediate in LSU sequences as compared to that for rbcL and SSU. Analyses of the separate LSU, and a combined LSU, SSU, and rbcL data sets have identified early-diverging lineages within the Gelidiales including Gelidiella, Pterocladia, Pterocladiella, and a lineage including Gelidium and species classified in other genera. The relationships among most gelidialean taxa are well-resolved and well-supported by analyses of the combined data; however, the relationships of Ptilophora and Capreolia remain unclear. It is speculated that these two lineages have diverged from a common ancestor over an evolutionarily short period of time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Abstract Volatile substances emitted from the flowers of eight Magnolia taxa ( M. sieboldii ssp. japonica, M. praecocissima var. praecocissima and var. borealis, M. tomentosa, M. salicifolia, M. obovata, M. denudata, and M. grandiflora ) and one Michelia species ( M. compressa ) (Magnoliaceae) were examined and identified using GC-MS. Volatile substances of these Magnolia and Michelia species consist primarily of monoterpenoids and sesquiterpenoids produced by the mevalonate pathway, acetogenins by the acetate-malonate pathway, and phenyl-propanoids by the shikimate pathway. These Magnolia and Michelia species all possessed various combinations of volatile monoterpenoids, acetogenins, and phenylpropanoids, except for Magnolia obovata , which emitted primarily sesquiterpenoids. Free amino acids in pollen of 12 Magnolia and one Liriodendron species were also analyzed, and their value as food sources for pollinators evaluated.
Pollinators visiting the flowers of five Magnolia species were collected in their native sites and identified. Their behaviors and roles as pollinating agents were assessed.  相似文献   

15.
The embryological characteristics of Gomortegaceae, which are poorly understood, were investigated on the basis of Gomortega nitida, the only species of the family, to understand better the evolution of this group within Laurales. Comparisons with other Laurales and Magnoliales (a sister group of Laurales) show that Gomortega has many embryological features in common with the other lauralean families. Notably, Gomortega shares a testa without or with at best only a poorly developed mesotesta as a synapomorphy with all other Laurales. The genus further shares anthers dehisced by valves as a synapomorphy with the other Laurales (except for Calycanthaceae and Monimiaceae), and a non-multiplicative testa and bisporangiate anther as synapomorphies with Atherospermataceae and Siparunaceae (although the non-multiplicative testa occurs as a homoplasy in Monimiaceae, and the bisporangiate anther in Monimiaceae pro parte, Lauraceae pro parte and Hernandiaceae, respectively). Gomortega shows simultaneous cytokinesis to form pollen grains, a one-celled ovule archesporium and non-specialized chalaza, all or part of which may be synapomorphies shared with Atherospermataceae. Gomortega appears to have no embryological autapomorphies, but further comparison with Atherospermataceae is required.Kweon Heo and Yukitoshi Kimoto contributed equally to this work.  相似文献   

16.
木兰科的化石记录   总被引:3,自引:0,他引:3  
张光富 《古生物学报》2001,40(4):433-442
通过整理和分析木兰科植物的化石记录发现:不论是植物大化石还是花粉,迄今为止在白垩纪以前地层中尚无可靠的记录,自白垩纪以来,木兰科的许多种广泛发生于北半球,如亚洲,欧洲及北美等地,但非洲和大洋洲至今尚未发现木兰科的化石记录。该科最早的化石记录为中国东北延吉地区早白垩世大拉子组的喙柱始木兰Archimagnolia rostrato-stylose Tao et Zhang. 根据现有化石记录,并结合木兰科现代植物的地理分布,推测:1)木兰科的起源时间不迟于早白垩世Aptian-Albian期;2)木兰科起源地点可能是东亚,后来经过欧洲进入北美,再从北美迁移到达南美洲;3)在地质历史时期,木兰属的出现比鹅掌楸属早,从而支持根据形态学与分子系统学研究得出的木兰属较鹅掌楸属原始的结论。  相似文献   

17.
Over the past 25 years, discoveries of Early Cretaceous fossil flowers, often associated with pollen and sometimes with vegetative parts, have revolutionized our understanding of the morphology and diversity of early angiosperms. However, few of these fossils have been integrated into the increasingly robust phylogeny of living angiosperms based primarily on molecular data. To remedy this situation, we have used a morphological data set for living basal angiosperms (including basal eudicots and monocots) to assess the most parsimonious positions of early angiosperm fossils on cladograms of Recent plants, using constraint trees that represent the current range of hypotheses on higher-level relationships, and concentrating on Magnoliidae (the clade including Magnoliales, Laurales, Canellales, and Piperales) and eudicots. In magnoliids, our results confirm proposed relationships of Archaeanthus (latest Albian?) to Magnoliaceae, Endressinia (late Aptian) to Magnoliales (the clade comprising Degeneria, Galbulimima, Eupomatia, and Annonaceae), and Walkeripollis pollen tetrads (late Barremian?) to Winteraceae, but they indicate that Mauldinia (early Cenomanian) was sister to both Lauraceae and Hernandiaceae rather than to Lauraceae alone. Among middle Albian to early Cenomanian eudicots, we confirm relationships of Nelumbites to Nelumbo, platanoid inflorescences and Sapindopsis to Platanaceae, and Spanomera to Buxaceae. With the possible exception of Archaeanthus, these fossils are apparently not crown group members of living families but rather stem relatives of one or more families.  相似文献   

18.
We examine rate heterogeneity among evolutionary lineages of the grass family at two plasmid loci, ndhF and rbcL, and we introduce a method to determine whether patterns of rate heterogeneity are correlated between loci. We show both that rates of synonymous evolution are heterogeneous among grass lineages and that are heterogeneity is correlated between loci at synonymous sites. At nonsynonymous sites, the pattern of rate heterogeneity is not correlated between loci, primarily due to an aberrant pattern of rate heterogeneity at nonsynonymous sites of rbcL. We compare patterns of synonymous rate heterogeneity to predictors based on the generation time effect and the speciation rate hypotheses. Although there is some evidence for generation time effects, neither generation time effects nor speciation rates appear to be sufficient to explain patterns of rate heterogeneity in the grass plastid sequences.   相似文献   

19.
20.
The plant nuclear DNA content (2C value) is a principal characteristic parmeter to describe biodiversity of species,which has important significance on the study of plant resources. In this study, we choosed 23 species from 10 representative genera (Magnolia、Michelia、Manglietia、Liriodendron、Talauma、 Paramichelia、Tsoongiodendron、Manglietiastrum、Kmeria、Parakmeria) of Magnoliaceae in China. All samples were determined using a flow cytometry technique with a standard of Zea mays (545pg/2C). The amount of nuclear DNA among these species ranged from 325pg (317850Mbp) to 1361pg (1331058Mbp) for Pgrandiflora, Mofficinalis subsp. biloba respectively, and the coefficient of variation (CV) were less than 5%. The results of the study will not only provide references for determination of the nuclear DNA content of Magnoliaceae and other plants, but also lay the foundation for the utilization and conservation of Magnoliaceae plant resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号