首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astrocytes possess GPCRs (G-protein-coupled receptors) for neuroactive substances and can respond via these receptors to signals originating from neurons as well as astrocytes. Like many transmembrane proteins, GPCRs exist in a dynamic equilibrium between receptors expressed at the plasma membrane and those present within intracellular trafficking compartments. The characteristics of GPCR trafficking within astrocytes have not been investigated. We therefore monitored the trafficking of recombinant fluorescent protein chimeras of the CB1R (cannabinoid receptor 1) that is thought to be expressed natively in astrocytes. CB1R chimeras displayed a marked punctate intracellular localization when expressed in cultured rat visual cortex astrocytes, an expression pattern reminiscent of native CB1R expression in these cells. Based upon trafficking characteristics, we found the existence of two populations of vesicular CB1R puncta: (i) relatively immobile puncta with movement characteristic of diffusion and (ii) mobile puncta with movement characteristic of active transport along cytoskeletal elements. The predominant direction of active transport is oriented radially to/from the nuclear region, which can be abolished by disruption of the microtubule cytoskeleton. CB1R puncta are localized within intracellular acidic organelles, mainly co-localizing with endocytic compartments. Constitutive trafficking of CB1R to and from the plasma membrane is an energetically costly endeavour whose function is at present unclear in astrocytes. However, given that intracellular CB1Rs can engage cell signalling pathways, it is likely that this process plays an important regulatory role.  相似文献   

2.
The CB1 cannabinoid receptor (CB1R) displays a significant level of ligand-independent (i.e. constitutive) activity, either when heterologously expressed in nonneuronal cells or in neurons where CB1Rs are endogenous. The present study investigates the consequences of constitutive activity on the intracellular trafficking of CB1R. When transfected in HEK-293 cells, CB1R is present at the plasma membrane, but a substantial proportion ( approximately 85%) of receptors is localized in intracellular vesicles. Detailed analysis of CB1-EGFP expressed in HEK-293 cells shows that the intracellular CB1R population is mostly of endocytic origin and that treatment with inverse agonist AM281 traps CB1R at the plasma membrane through a monensin-sensitive recycling pathway. Co-transfection with dominant positive or dominant negative mutants of the small GTPases Rab5 and Rab4, but not Rab11, profoundly modifies the steady-state and ligand-induced intracellular distribution of CB1R, indicating that constitutive endocytosis is Rab5-dependent, whereas constitutive recycling is mediated by Rab4. In conclusion, our results indicate that, due to its natural constitutive activity, CB1R permanently and constitutively cycles between plasma membrane and endosomes, leading to a predominantly intracellular localization at steady state.  相似文献   

3.
Studies on olfactory receptor (OR) pharmacology have been hindered by the poor plasma membrane localization of most ORs in heterologous cells. We previously reported that association with the beta(2)-adrenergic receptor (beta(2)-AR) facilitates functional expression of the OR M71 at the plasma membrane of HEK-293 cells. In the present study, we examined the specificity of M71 interactions with other G protein-coupled receptors (GPCRs). M71 was co-expressed in HEK-293 cells with 42 distinct GPCRs, and the vast majority of these receptors had no significant effect on M71 surface expression. However, co-expression with three subtypes of purinergic receptor (P2Y(1)R, P2Y(2)R, and A(2A)R) resulted in markedly enhanced plasma membrane localization of M71. Agonist stimulation of M71 co-expressed with P2Y(1)R and P2Y(2)R activated the mitogen-activated protein kinase pathway via coupling of M71 to Galpha(o). We also examined the ability of beta(2)-AR, P2Y(1)R, P2Y(2)R, and A(2A)Rto interact with and regulate ORs beyond M71. We found that co-expression of beta(2)-AR or the purinergic receptors enhanced the surface expression for an M71 subfamily member but not for several other ORs from different subfamilies. In addition, through chimeric receptor studies, we determined that the second transmembrane domain of beta(2)-AR is necessary for beta(2)-AR facilitation of M71 plasma membrane localization. These studies shed light on the specificity of OR interactions with other GPCRs and the mechanisms governing olfactory receptor trafficking.  相似文献   

4.
Beta-arrestins are multifunctional adaptors that bind agonist-activated G protein-coupled receptors (GPCRs), mediate their desensitization and internalization, and control the rate at which receptors recycle back at the plasma membrane ready for subsequent stimulation. The activation of the bradykinin (BK) type 2 receptor (B2R) results in the rapid desensitization and internalization of the receptor. Little is known, however, about the role of beta-arrestin in regulating the intracellular trafficking and the resensitization of the B2R. Using confocal microscopy, we show that BK stimulation of COS-7 cells expressing B2R induces the colocalization of the agonist-activated receptor with beta-arrestin into endosomes. Fluorescent imaging and ligand binding experiments also reveal that upon agonist removal, beta-arrestin rapidly dissociates from B2R into endosomes, and that receptors return back to the plasma membrane, fully competent for reactivating B2R signaling as measured by NO production upon a second BK challenge. However, when the receptor is mutated in its C-terminal domain to increase its avidity for beta-arrestin, B2R remains associated with beta-arrestin into endosomes, and receptors fail to recycle to the plasma membrane postagonist wash. Similarly, the recycling of receptors is prevented when a beta-arrestin mutant exhibiting increased avidity for agonist-bound GPCRs is expressed with B2R. Stabilizing receptor/beta-arrestin complexes into endosomes results in the dampening of the BK-mediated NO production. These results provide evidence for the involvement of beta-arrestin in the intracellular trafficking of B2R, and highlight the importance of receptor recycling in reestablishing B2R signaling.  相似文献   

5.
Primary cilia are sensory organelles present on most mammalian cells. The functions of cilia are defined by the signaling proteins localized to the ciliary membrane. Certain G protein-coupled receptors (GPCRs), including somatostatin receptor 3 (Sstr3) and serotonin receptor 6 (Htr6), localize to cilia. As Sstr3 and Htr6 are the only somatostatin and serotonin receptor subtypes that localize to cilia, we hypothesized they contain ciliary localization sequences. To test this hypothesis we expressed chimeric receptors containing fragments of Sstr3 and Htr6 in the nonciliary receptors Sstr5 and Htr7, respectively, in ciliated cells. We found the third intracellular loop of Sstr3 or Htr6 is sufficient for ciliary localization. Comparison of these loops revealed a loose consensus sequence. To determine whether this consensus sequence predicts ciliary localization of other GPCRs, we compared it with the third intracellular loop of all human GPCRs. We identified the consensus sequence in melanin-concentrating hormone receptor 1 (Mchr1) and confirmed Mchr1 localizes to primary cilia in vitro and in vivo. Thus, we have identified a putative GPCR ciliary localization sequence and used this sequence to identify a novel ciliary GPCR. As Mchr1 mediates feeding behavior and metabolism, our results implicate ciliary signaling in the regulation of body weight.  相似文献   

6.
Histamine H3 receptor (H3R), one of G protein-coupled receptors (GPCRs), has been known to regulate neurotransmitter release negatively in central and peripheral nervous systems. Recently, a variety of intracellular proteins have been identified to interact with carboxy (C)-termini of GPCRs, and control their intracellular trafficking and signal transduction efficiencies. Screening for such proteins that interact with the C-terminus of H3R resulted in identification of one of the chloride intracellular channel (CLIC) proteins, CLIC4. The association of CLIC4 with H3R was confirmed in in vitro pull-down assays, coimmunoprecipitation from rat brain lysate, and immunofluorescence microscopy of rat cerebellar neurons. The data from flowcytometric analysis, radioligand receptor binding assay, and cell-based ELISA indicated that CLIC4 enhanced cell surface expression of wild-type H3R, but not a mutant form of the receptor that failed to interact with CLIC4. These results indicate that, by binding to the C-terminus of H3R, CLIC4 plays a critical role in regulation of the receptor cell surface expression.  相似文献   

7.
β-arrestin mediates the desensitization of GPCRs and acts as an adaptor molecule to recruit the receptor complex to clathrin-rich regions. Class-A GPCRs subsequently dissociate from β-arrestin but class-B GPCRs internalize with β-arrestin in the endocytic vesicles. Here the dopamine D2 and D3 receptors, which have similar structural features but different intracellular trafficking properties, were used in an attempt to better understand the structural requirements for the classification of GPCRs. The C-terminus tail of the vasopressin type-2 receptor was added to the ends of D2R and D3R to increase their affinity to β-arrestin. A point mutation was introduced into the DRY motif to change their basal activation levels. Among a battery of constructs in which the C-terminus tail and/or DRY motif was altered, class-B behavior was observed with the constructs whose affinities for β-arrestin were increased complementarily and their signaling was either maintained or regained. In conclusion, the DRY motif and C-terminal tail of the GPCRs determine complementarily their intracellular trafficking behavior by regulating the affinity to β-arrestin and G protein coupling.  相似文献   

8.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.  相似文献   

9.
The trafficking of G protein coupled‐receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine‐tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor‐receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin‐coated pit dynamics, and through the scaffolding adaptor protein β‐arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.   相似文献   

10.
Recent studies have shown that G-protein-coupled receptors (GPCRs) can assemble as high molecular weight homo- and hetero-oligomeric complexes. This can result in altered receptor-ligand binding, signaling, or intracellular trafficking. We have co-transfected HEK-293 cells with differentially epitope-tagged GPCRs from different subfamilies and determined whether oligomeric complexes were formed by co-immunoprecipitation and immunoblot analysis. This gave the surprising result that the 5HT(1A) receptor was capable of forming hetero-oligomers with all GPCRs tested including the 5HT(1B), 5HT(1D), EDG(1), EDG(3), GPR(26), and GABA(B2) receptors. The testing of other GPCR combinations showed similar results with hetero-oligomer formation occurring for the 5HT(1D) with the 5HT(1B) and EDG(1) receptor. Control studies showed that these complexes were present in co-transfected cells before the time of lysis and that the hetero-oligomers were comprised of GPCRs at discrete stoichiometries. These findings suggest that GPCRs have a natural tendency to form oligomers when co-transfected into cells. Future studies should therefore investigate the presence and physiological role of GPCR hetero-oligomers in cells in which they are endogenously expressed.  相似文献   

11.
As for all proteins, G protein-coupled receptors (GPCRs) undergo synthesis and maturation within the endoplasmic reticulum (ER). The mechanisms involved in the biogenesis and trafficking of GPCRs from the ER to the cell surface are poorly understood, but they may involve interactions with other proteins. We have now identified the ER chaperone protein calnexin as an interacting protein for both D(1) and D(2) dopamine receptors. These protein-protein interactions were confirmed using Western blot analysis and co-immunoprecipitation experiments. To determine the influence of calnexin on receptor expression, we conducted assays in HEK293T cells using a variety of calnexin-modifying conditions. Inhibition of glycosylation either through receptor mutations or treatments with glycosylation inhibitors partially blocks the interactions with calnexin with a resulting decrease in cell surface receptor expression. Confocal fluorescence microscopy reveals the accumulation of D(1)-green fluorescent protein and D(2)-yellow fluorescent protein receptors within internal stores following treatment with calnexin inhibitors. Overexpression of calnexin also results in a marked decrease in both D(1) and D(2) receptor expression. This is likely because of an increase in ER retention because confocal microscopy revealed intracellular clustering of dopamine receptors that were co-localized with an ER marker protein. Additionally, we show that calnexin interacts with the receptors via two distinct mechanisms, glycan-dependent and glycan-independent, which may underlie the multiple effects (ER retention and surface trafficking) of calnexin on receptor expression. Our data suggest that optimal receptor-calnexin interactions critically regulate D(1) and D(2) receptor trafficking and expression at the cell surface, a mechanism likely to be of importance for many GPCRs.  相似文献   

12.
In this report we show, by confocal analysis of indirect immunofluorescence, that the type-1 cannabinoid receptor (CB1R), which belongs to the family of G-protein-coupled receptors, is expressed on the plasma membrane in human breast cancer MDA-MB-231 cells. However, a substantial proportion of the receptor is present in lysosomes. We found that CB1R is associated with cholesterol- and sphyngolipid-enriched membrane domains (rafts). Cholesterol depletion by methyl-beta-cyclodextrin (MCD) treatment strongly reduces the flotation of the protein on the raft-fractions (DRM) of sucrose density gradients suggesting that CB1 raft-association is cholesterol dependent. Interestingly binding of the agonist, anandamide (AEA) also impairs DRM-association of the receptor suggesting that the membrane distribution of the receptor is dependent on rafts and is possibly regulated by the agonist binding. Indeed MCD completely blocked the clustering of CB1R at the plasma membrane. On the contrary the lysosomal localization of CB1R was impaired by this treatment only after AEA binding.  相似文献   

13.
Several tryptophan (Trp) residues are conserved in G protein-coupled receptors (GPCRs). Relatively little is known about the contribution of these residues and especially of those in the fourth transmembrane domain in the function of the CB(2) cannabinoid receptor. Replacing W158 (very highly conserved in GPCRs) and W172 (conserved in CB(1) and CB(2) cannabinoid receptors but not in many other GPCRs) of the human CB(2) receptor with A or L or with F or Y produced different results. We found that the conservative change of W172 to F or Y retained cannabinoid binding and downstream signaling (inhibition of adenylyl cyclase), whereas removal of the aromatic side chain by mutating W172 to A or L eliminated agonist binding. W158 was even more sensitive to being mutated. We found that the conservative W158F mutation retained wild-type binding and signaling activities. However, W158Y and W158A mutants completely lost ligand binding capacity. Thus, the Trp side chains at positions 158 and 172 seem to have a critical, but different, role in cannabinoid binding to the human CB(2) receptor.  相似文献   

14.
The cytoplasmic helix domain (fourth cytoplasmic loop, helix 8) of numerous G protein-coupled receptors (GPCRs) such as rhodopsin and the beta-adrenergic receptor exhibit unique structural and functional characteristics. Computer models also predict this structure for the cannabinoid CB2 receptor, another member of the GPCR superfamily. In our study, a peptide corresponding to helix 8 of the CB2 receptor was synthesized chemically and its secondary structure determined by circular dichroism (CD) and (1)H NMR spectroscopy. NMR and CD revealed an alpha-helical structure in this region in both dodecylphosphocholine micelles and dimethylsulfoxide, in contrast to a random coil configuration found in aqueous solvent. This finding is in good agreement with other previous GPCR structural studies including X-ray crystallography. By combining our finding with other studies, we further hypothesize that the amphipathic nature of helix 8 can play a significant role in the function and regulation of CB receptors as well as other GPCRs in general.  相似文献   

15.
We have studied "in vivo" neurochemically identified striatal neurons to analyze the localisation and the trafficking of dopamine and acetylcholine G protein coupled receptors (GPCR) (D1R, D2R, m2R and m4R) under the influence of neurotransmitter environment. We have identified receptors in tissue sections through immunohistochemical detection at the light and electron microscopic level. We have identified receptors in normal animals and after acute and chronic stimulations. We have quantified receptors through image analysis at the electron microscopic level in relation to various subcellular compartments. Our results demonstrate that, in normal conditions, GPCRs are mostly associated with plasma membrane of the striatal neurons, mostly at extra-synaptic sites. In certain instances (m4R; D2R), receptors have prominent localisation inside the rough endoplasmic reticulum. Our results also show that two distinct receptors for a same neurotransmitter may have distinct subcellular localisation in a same neuronal population (m2R versus m4R) and that the same neurotransmitter receptor (m4R) can have distinct localisation in distinct neuronal populations (cytoplasm versus cell surface). After acute stimulation, cell surface receptors undergo dramatic subcellular changes that involve plasma membrane depletion, internalisation in endosomes and in multivesicular bodies. Such changes are reversible after the end of the stimulation and are blocked by antagonist action. Chronic stimulation also provokes changes in subcellular localisation with specific pattern: plasma membrane depletion, and exaggerated storage of receptors in rough endoplasmic reticulum and eventually Golgi complex (D1R; m2R and m4R). Decreasing chronic receptor stimulation reverses such changes. These results demonstrate that, "in vivo", in the striatum, GPCRs undergo complex intraneuronal trafficking under the influence of neurochemical environment in conditions that dramatically modulate the number of cell surface receptors available for interaction with neurotransmitters or drugs. This confirms that "in vivo", the trafficking and the subcellular compartmentalization of GPCRs may contribute to regulate neuronal sensitivity and neuronal interactions in physiological, experimental and pathological conditions, including in therapeutic conditions.  相似文献   

16.
Wilbanks AM  Laporte SA  Bohn LM  Barak LS  Caron MG 《Biochemistry》2002,41(40):11981-11989
The DRY motif is a triplet amino acid sequence (aspartic acid, arginine, and tyrosine) that is highly conserved in G protein-coupled receptors (GPCRs). Recently, we have shown that a molecular determinant for nephrogenic diabetes insipidus, the vasopressin receptor with a substitution at the DRY motif arginine (V2R R137H), is a constitutively desensitized receptor that is unable to couple to G proteins due to its constitutive association with beta-arrestin [Barak, L. S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 93-98]. Additionally, the mutant receptors are localized in endocytic vesicles, identical to wild-type receptors stimulated with agonist. In this study, we asked whether the constitutively desensitized phenotype observed in the V2R R137H represents a general paradigm that may be extended to other GPCRs. We show that arginine substitutions in the DRY motifs of the alpha(1B) adrenergic receptor (alpha(1B)-AR) and angiotensin II type 1A receptor (AT(1A)R) result in receptors that are uncoupled from G proteins, associated with beta-arrestins, and found localized in endocytic vesicles rather than at the plasma membrane in the absence of agonists. The localization of the alpha(1B)-ARs and AT(1A)Rs with arginine substitutions can be restored to the plasma membrane by either using selective antagonists or preventing the endocytosis of the beta-arrestin-receptor complexes. These results indicate that the arginine residue of the DRY motif is essential for preserving the localization of the inactive receptor complex. Furthermore, constitutive desensitization may underlie some loss-of-function receptor phenotypes and represent an unappreciated mechanism of hormonal resistance.  相似文献   

17.
Prossnitz ER 《Life sciences》2004,75(8):893-899
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling molecules in the human genome. As such, they interact with numerous intracellular molecules, which can act either to propagate or curtail signaling from the receptor. Their primary mode of cellular activation occurs through heterotrimeric G proteins, which in turn can activate a wide spectrum of effector molecules, including phosphodiesterases, phospholipases, adenylyl cyclases and ion channels. Active GPCRs are also the target of G protein-coupled receptor kinases, which phosphorylate the receptors culminating in the binding of the protein arrestin. This results in rapid desensitization through inhibition of G protein binding, as well as novel mechanisms of cellular activation that involve the scaffolding of cellular kinases to GPCR-arrestin complexes. Arrestins can also serve to mediate the internalization of certain GPCRs, a process which plays an important role in regulating cellular activity both by mediating long-term desensitization through down regulation (degradation) of receptors and by recycling desensitized receptors back to the cell surface to initiate additional rounds of signaling. The mechanisms that regulate the subsequent intracellular trafficking of GPCRs following internalization are largely unknown. Recently however, it has become clear that the pattern of receptor phosphorylation and subsequent binding of arrestin play a critical role in the intracellular trafficking of internalized receptors, thereby dictating the ultimate fate of the receptor. In addition, arrestins have now been shown to be required for the recycling of GPCRs that are capable of internalizing through arrestin-independent mechanisms. This review will summarize recent advances in our understanding of the roles of arrestins in post-endocytic GPCR trafficking.  相似文献   

18.
G-protein coupled receptors may mediate their effects on neuronal growth and differentiation through activation of extracellular signal-regulated kinases 1/2 (ERK1/2), often elicited by transactivation of growth factor receptor tyrosine kinases. This elaborate signaling process includes inducible formation and trafficking of multiprotein signaling complexes and is facilitated by pre-ordained membrane microdomains, in particular lipid rafts. In this study, we have uncovered novel signaling interactions of cannabinoid receptors with fibroblast growth factor receptors, which depended on lipid rafts and led to ERK1/2 activation in primary neurons derived from chick embryo telencephalon. More specifically, the cannabinoid 1 receptor (CB1R) agonist methanandamide induced tyrosine phosphorylation and transactivation of fibroblast growth factor receptor (FGFR)1 via Src and Fyn, which drove an amplification wave in ERK1/2 activation. Transactivation of FGFR1 was accompanied by the formation of a protein kinase C ε-dependent multiprotein complex that included CB1R, Fyn, Src, and FGFR1. Recruitment of molecules increased with time of exposure to methanandamide, suggesting that in addition to signaling it also served trafficking of receptors. Upon agonist stimulation we also detected a rapid incorporation of CB1R, as well as activated Src and Fyn, and FGFR1 in lipid rafts. Most importantly, lipid raft integrity was a pre-requisite for CB1R-dependent complex formation. Our data provide evidence that lipid rafts may organize CB1 receptor proximal signaling events, namely activation of Src and Fyn, and transactivation of FGFR1 towards activation of ERK1/2 and induction of neuronal differentiation.  相似文献   

19.
Receptor activity modifying proteins (RAMPs) associate with G-protein-coupled receptors (GPCRs) at the plasma membrane and together bind a variety of peptide ligands, serving as a communication interface between the extracellular and intracellular environments. The collection of RAMP-interacting GPCRs continues to expand and now consists of GPCRs from families A, B and C, suggesting that RAMP activity is extremely prevalent. RAMP association with GPCRs can regulate GPCR function by altering ligand binding, receptor trafficking and desensitization, and downstream signaling pathways. Here, we elaborate on these RAMP-dependent mechanisms of GPCR regulation, which provide opportunities for pharmacological intervention.  相似文献   

20.
Prokineticins are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors, PKR1 and PKR2. Recently, mutations in prokineticin 2 (PK2) and PKR2 are found to be associated with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, disorders characterized by delayed puberty and infertility. However, little is known how PKRs interact and activate G-proteins to elicit signal transduction. In the present study, we took advantage of one disease-associated mutation (R164Q) located in the second intracellular (IL2) loop of PKR2, to investigate the role of IL2 loop in the cell signaling, G-protein binding and receptor trafficking. R164Q mutant PKR2 showed normal cell surface expression and ligand binding capacity. However, the PKR2 signaling was abolished by R164Q mutation. We demonstrated that R164Q mutation disrupted the interaction of IL2 loop to the Gα(q), Gα(i), and Gα(16)-proteins. A positive-charged amino acid at this position is required for proper function, and the signaling efficacy and potency depend on the net amount of positive charges. We also demonstrated that the interactive partner of Arg-164 may localize in the C-terminal five residues of Gα(q)-protein. A series of mutation analysis indicated that the basic amino acids at the C terminus of IL2 loop may function cooperatively in GPCRs. Furthermore, R164Q mutation also results in minimal ligand-induced endocytosis of PKR2. As many GPCRs share structural homology in the C terminus of IL2 loop, our findings may have general application in understanding structure and function of GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号