首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversities of the nuclear and mitochondrial genomes in Pinus parviflora were studied in 16 populations, which were distributed across most of the species' range in Japan. Six mitochondrial DNA haplotypes were identified among the 16 populations. The intrapopulation diversity of allozymes was similar to that of other endemic woody species (H(S)=0.259). Although P. parviflora is distributed in discrete populations, differentiation between these was very low (G(ST)=0.044). In addition, the extent of genetic differentiation between two varieties (var. pentaphylla and var. parviflora) was extremely low (G(VT)=0.001). Intrapopulation diversity of mitochondrial DNA was also very low (H(S)=0.098), but population differentiation was high (G(ST)=0.863). Moreover, the distribution of haplotypes reflected the taxonomic differences between P. parviflora var. pentaphylla and var. parviflora. The populations of var. pentaphylla and var. parviflora contained different haplotypes. Differing modes of inheritance may account for the differences in nuclear and mitochondrial genetic diversity.  相似文献   

2.
Pinus species exhibit a paternal chloroplast inheritance and a maternal mitochondrial inheritance. The levels and patterns of cpDNA and mtDNA introgression between the two pine species, P. pumila and P. parviflora var. pentaphylla, were examined at three mountain sites in Japan. The pine species were examined by using PCR-based diagnostic genetic markers of cpDNA and mtDNA. The survey which was carried out in multiple hybrid zones demonstrated a generality in the uni-directional pattern of cytoplasmic gene flow between the two pine species, i.e. paternal cpDNA flowed from P. parviflora var. pentaphylla to P. pumila, and in contrast, maternal mtDNA flowed from P. pumila to P. parviflora var. pentaphylla. Whenever plants which had a non-native combination of cpDNA and mtDNA were observed, they always had the cpDNA haplotype of P. parviflora var. pentaphylla and the mtDNA haplotype of P. pumila. The existence of only this type of cytoplasmic chimera may suggest that F1 hybrids are successfully produced only in the crossing of P. pumila as the maternal parent and P. parviflora var. pentaphylla as the paternal parent. The present study also detected extensive mtDNA capture in populations of P. parviflora var. pentaphylla located in the southern and middle parts of the Ohu Mountains, Tohoku, Japan. In that area, nearly all of the plants examined had the mtDNA haplotype of P. pumila. The extensive mtDNA introgression suggests that seed flow could be an effective medium for interspecific gene exchange. Received 17 August 1998/ Accepted in revised form 7 January 1999  相似文献   

3.
Pinus species exhibit paternal chloroplast inheritance and maternal mitochondrial inheritance. This independent inheritance of two cytoplasmic genomes provides an exceptional environment for discriminating female (seeds) and male (pollen) components of gene flow across hybridizing species. We obtained mitochondrial genetic markers diagnostic toP. parviflora var.pentaphylla andP. pumila by PCR amplification of the intron ofnad1 on mtDNA, and examined the spatial-distribution pattern of the mtDNA haplotypes in a hybrid zone betweenP. parviflora var.pentaphylla andP. pumila in the Tanigawa Mountains of Japan. These data, in conjunction with previous information on cpDNA haplotypes and needle morphology, revealed contrastive patterns of introgression of two cytoplasmic genomes. CpDNA introgression has occurred uni-directionally fromP. parviflora var.pentaphylla toP. pumila. Conversely, mtDNA introgression has occurred in the opposite direction, fromP. pumila toP. parviflora var.pentaphylla. Levels of introgression are roughly equivalent for cpDNA and mtDNA. The contrastive spatial distribution pattern of cpDNA and mtDNA haplotypes could be caused by differential movement of seeds and pollen for interspecific genetic exchange.  相似文献   

4.
Ren GP  Abbott RJ  Zhou YF  Zhang LR  Peng YL  Liu JQ 《Heredity》2012,108(5):552-562
Although homoploid hybrid speciation in plants is probably more common than previously realized, there are few well-documented cases of homoploid hybrid origin in conifers. We examined genetic divergence between two currently widespread pines in Northeast China, Pinus sylvestris var. mongolica and Pinus densiflora, and also whether two narrowly distributed pines in the same region, Pinus funebris and Pinus takahasii, might have originated from the two widespread species by homoploid hybrid speciation. Our results, based on population genetic analysis of chloroplast (cp), mitochondrial (mt) DNA, and nuclear gene sequence variation, showed that the two widespread species were divergent for both cp- and mtDNA variation, and also for haplotype variation at two of eight nuclear gene loci surveyed. Our analysis further indicated that P. sylvestris var. mongolica and P. densiflora remained allopatric during the most severe Quaternary glacial period that occurred in Northeast China, but subsequently exhibited rapid range expansions. P. funebris and P. takahasii, were found to contain a mixture of chlorotypes and nuclear haplotypes that distinguish P. sylvestris var. mongolica and P. densiflora, in support of the hypothesis that they possibly originated via homoploid hybrid speciation following secondary contact and hybridization between P. sylvestris var. mongolica and P. densiflora.  相似文献   

5.
Interpopulation hybrid breakdown maps to the mitochondrial genome   总被引:4,自引:0,他引:4  
Hybrid breakdown, or outbreeding depression, is the loss of fitness observed in crosses between genetically divergent populations. The role of maternally inherited mitochondrial genomes in hybrid breakdown has not been widely examined. Using laboratory crosses of the marine copepod Tigriopus californicus, we report that the low fitness of F(3) hybrids is completely restored in the offspring of maternal backcrosses, where parental mitochondrial and nuclear genomic combinations are reassembled. Paternal backcrosses, which result in mismatched mitochondrial and nuclear genomes, fail to restore hybrid fitness. These results suggest that fitness loss in T. californicus hybrids is completely attributable to nuclear-mitochondrial genomic interactions. Analyses of ATP synthetic capacity in isolated mitochondria from hybrid and backcross animals found that reduced ATP synthesis in hybrids was also largely restored in backcrosses, again with maternal backcrosses outperforming paternal backcrosses. The strong fitness consequences of nuclear-mitochondrial interactions have important, and often overlooked, implications for evolutionary and conservation biology.  相似文献   

6.
Neutral alleles can eventually pass a hybrid zone and their initial clines generated by a pure diffusion process dissipate with time, irrespective of the presence or absence of physical barriers. However, the transient neutral clines at the nuclear or organelle sites can be reinforced by the cytonuclear disequilibrium generated by diploid seed and haploid pollen dispersal. In this study, the spread of a neutral allele in an ecological zone of hermaphrodite plants is examined under three cytonuclear systems for genomes with contrasting modes of inheritance (paternal, maternal, and biparental inheritance). The results show that the transient neutral clines can exhibit the spatial pattern similar to the selective clines from separate genomes although discordance between them exists. The spread of a neutral allele is not only related to the vectors of seed and pollen dispersal but also to the mode of its inheritance. Pollen dispersal facilitates the direct effects of the selective organelle sites with paternal inheritance on the spread of a neutral nuclear allele. It also enhances its indirect effects on the spread of a neutral organelle allele with maternal inheritance via modifying the cytonuclear disequilibrium. A positive relationship exists between the barriers to the spread of selective nuclear (or organelle) and neutral organelle (or nuclear) alleles. An asymmetric barrier to the spread of the neutral alleles exists on the two sides of the physical barrier, given the presence of symmetric barrier to the spread of the selective alleles. These theoretical predictions highlight the effects of cytonuclear disequilibrium on the spread of a neutral allele and draw attention to our empirical cline analysis with neutral markers.  相似文献   

7.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2011,139(11-12):1509-1519
Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4?kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40?% of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.  相似文献   

8.
The analysis of the subunit polypeptide composition of Fraction 1 protein provides information on the expression of both chloroplast and nuclear genomes. Fraction 1 protein, isolated from leaves of the somatic hybrid plants derived from the fusion of protoplasts of Petunia parodii and P. parviflora, was analyzed for its subunit polypeptide composition by isoelectric focusing in 8 M urea. The fraction 1 protein enzyme oligomer in the somatic hybrid plants contained small subunits resulting from the expression of both parental nuclear genomes, but probably only one of the parental large subunits, namely that of P. parodii. The relevance of such somatic hybrid material for the study of nucleocytoplasmic interrelationships is discussed, as well as the use of these fraction 1 protein isoelectric focusing patterns for the analysis of taxonomic relationships in Petunia.  相似文献   

9.
Spatial variation in natural selection may play an important role in determining the genetic structure of hybridizing populations. Previous studies have found that F1 hybrids between naturally hybridizing Ipomopsis aggregata and Ipomopsis tenuituba in central Colorado differ in fitness depending on both genotype and environment: hybrids had higher survival when I. aggregata was the maternal parent, except in the centre of the hybrid zone where both hybrid types had high survival. Here, we developed both maternally (cpDNA PCR-RFLP) and biparentally inherited (nuclear AFLP) species-diagnostic markers to characterize the spatial genetic structure of the natural Ipomopsis hybrid zone, and tested the prediction that the majority of natural hybrids have I. aggregata cytoplasm, except in areas near the centre of the hybrid zone. Analyses of 352 individuals from across the hybrid zone indicate that cytoplasmic gene flow is bidirectional, but contrary to expectation, most plants in the hybrid zone have I. tenuituba cytoplasm. This cytotype distribution is consistent with a hybrid zone in historical transition, with I. aggregata nuclear genes advancing into the contact zone. Further, nuclear data show a much more gradual cline than cpDNA markers that is consistent with morphological patterns across the hybrid populations. A mixture of environment- and pollinator-mediated selection may contribute to the current genetic structure of this hybrid system.  相似文献   

10.
In the genus Lilium, plants obtained from crosses, especially between distant relatives, are not always hybrids because embryos can develop as a result of apomixis. These plants constitute genetic material of the maternal parent only. In this study, verification of hybrid status of plants which have been obtained from the crosses 'Marco Polo'xLilium henryi and 'Expression'xL. henryi was performed through the use of cytological and molecular cytogenetic methods. According to cytological analyses, all genotypes tested had 2n = 2x = 24 chromosomes. Genomic in situ hybridisation (GISH) was used for hybrid verification. In hybrid plants, this method distinguished all paternal and maternal chromosomes at the stage of somatic metaphase and prophase. For GISH, paternal genomic DNA was used as a probe and maternal DNAs were used as blocks. Fluorescence in situ hybridisation (FISH) with 5S rDNA and 25S rDNA probes was used as the second method of hybrid verification. Selected chromosome markers based on genome-specific localisation of rDNA loci were used for analysis of the F1 hybrids obtained from the crosses 'Marco Polo'xL. henryi and 'Expression'xL. henryi. The presence of marker chromosomes characteristic for each of the paternal genotypes was a confirmation that the plants obtained were hybrids.  相似文献   

11.
Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii.  相似文献   

12.
Pinus lambertiana (sugar pine) is an economically and ecologically important conifer with a 1600-km latitudinal range extending from Oregon, USA, to northern Baja California, Mexico. Like all North American white pines (subsect. Strobus), sugar pine is highly susceptible to white pine blister rust, a disease caused by the fungus Cronartium ribicola. We conducted a chloroplast DNA (cpDNA) survey of Pinus subsect. Strobus with comprehensive geographical sampling of P. lambertiana. Sequence analysis of 12 sugar pine individuals revealed strong geographical differentiation for two chloroplast haplotypes. A diagnostic restriction site survey of an additional 72 individuals demarcated a narrow 150-km contact zone in northeastern California. In the contact zone, maternal (megagametophtye) and paternal (embryo) haplotypes were identified in 31 single seeds, demonstrating bidirectional pollen flow extending beyond the range of maternal haplotypes. The frequencies of the Cr1 allele for white pine blister rust major gene resistance, previously determined for 41 seed zones, differ significantly among seed zones that are fixed for the alternate haplotypes, or contain a mixture of both haplotypes. Interspecific phylogenetic analysis reveals that the northern sugar pine haplotype belongs to a clade that includes Pinus albicaulis (whitebark pine) and all of the East Asian white pines. Furthermore, there is little cpDNA divergence between northern sugar pine and whitebark pine (dS = 0.00058). These results are consistent with a Pleistocene migration of whitebark pine into North America and subsequent chloroplast introgression from whitebark pine to sugar pine. This study demonstrates the importance of placing phylogeographical results in a broader phylogenetic context.  相似文献   

13.
Empirical study of hybrid zone movement   总被引:3,自引:0,他引:3  
Buggs RJ 《Heredity》2007,99(3):301-312
Hybrid zones are 'natural laboratories' for studying the origin, maintenance and demise of species. Theory predicts that hybrid zones can move in space and time, with significant consequences for both evolutionary and conservation biology, though such movement is often perceived as rare. Here, a review of empirical studies of moving hybrid zones in animals and plants shows 23 examples with observational evidence for movement, and a further 16 where patterns of introgression in molecular markers could be interpreted as signatures of movement. The strengths and weaknesses of methods used for detecting hybrid zone movement are discussed, including long-term replicated sampling, historical surveys, museum/herbarium collections, patterns of relictual populations and introgression of genetic markers into an advancing taxon. Factors governing hybrid zone movement are assessed in the light of the empirical studies, including environmental selection, competition, asymmetric hybridization, dominance drive, hybrid fitness, human activity and climate change. Hybrid zone movement means that untested assumptions of stability in evolutionary studies on hybrid zone can lead to mistaken conclusions. Movement also means that conservation effort aimed at protecting against introgression could unwittingly favour an invading taxon. Moving hybrid zones are of wide interest as examples of evolution in action and possible indicators of environmental change. More long-term experimental studies are needed that incorporate reciprocal transplants, hybridization experiments and surveys of molecular markers and population densities on a range of scales.  相似文献   

14.
Strong karotypic orthoselection does not fully account for genome size variation in pines. Adult F1 interspecific pine hybrids are fertile and the genomic consequences of hybridization can be studied using haploid female megagametophytes. Greater variation in genome size was hypothesized to occur in hybrids compared to their parental species and the variation was thought to be positively related to the phylogenetic distance between the parental species. Nuclear 1C DNA content of megagametophytes from four sets of fertile Pinus spp. F1 hybrids and their parents was determined using a laser flow cytometer. Fertile F1 hybrids included two sets of hard pine hybrid Pinus elliottii Engelm. x P. caribaea var. hondurensis Morelet and two Asian x New World soft pine hybrids P. wallichiana A.B. Jacks. x P. strobus L. (hybrid is known as P. x schwerinii ) and P. lambertiana Dougl. x P. armandii Franchlet. Fertile, adult F1 produce haploid megagametophytes with nuclear DNA contents comparable to the parents or parental species. One genomic consequence of hybridization in pines is stability in nuclear DNA content. Hybrid genomes neither increased or decreased DNA content regardless of the phylogenetic distance between parents. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 503–508.  相似文献   

15.
The reproductive isolation barriers and the mating patterns among Pinus pumila, P. parviflora var. pentaphylla and their hybrids were examined by flowering phenology and genetic assays of three life stages: airborne‐pollen grains, adults and seeds, in a hybrid zone on Mount Apoi, Hokkaido, Japan. Chloroplast DNA composition of the airborne‐pollen was determined by single‐pollen polymerase chain reaction. Mating patterns were analysed by estimating the molecular hybrid index of the seed parent, their seed embryos and pollen parents. The observation of flowering phenology showed that the flowering of P. pumila precedes that of P. parviflora var. pentaphylla by about 6 to 10 days within the same altitudinal ranges. Although this prezygotic isolation barrier is effective, the genetic assay of airborne‐pollen showed that the two pine species, particularly P. pumila, still have chances to form F1 hybrid seeds. Both parental species showed a strong assortative mating pattern; F1 seeds were found in only 1.4% of seeds from P. pumila mother trees and not at all in P. parviflora var. pentaphylla. The assortative mating was concluded as the combined result of flowering time differentiation and cross‐incompatibility. In contrast to the parental species, hybrids were fertilized evenly by the two parental species and themselves. The breakdown of prezygotic barriers (intermediate flowering phenology) and cross‐incompatibility may account for the unselective mating. It is suggested that introgression is ongoing on Mount Apoi through backcrossing between hybrids and parental species, despite strong isolation barriers between the parental species.  相似文献   

16.
Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization.  相似文献   

17.
兴安松引种栽培的研究   总被引:1,自引:0,他引:1  
李长海  刘宇明 《植物研究》1999,19(3):323-323
兴安松为偃松一变型,近年来才发现,数量甚少,为加强对这一种质资源的保护和利用,我们对其生物,生态学特性及繁殖技术进行了研究。结果表明:嫁接是繁殖兴安松有效的方法;红松和樟子松是最理想的砧木。由于嫁接成功,使兴安松在黑龙江省森林植物园得到了迁地保护。  相似文献   

18.
Plastidial (pt) and mitochondrial (mt) genes usually show maternal inheritance. Non-Mendelian, biparental inheritance of plastids was first described by Baur (Z Indukt Abstamm Vererbungslehre 1:330–351, 1909) for crosses between Pelargonium cultivars. We have analyzed the inheritance of pt and mtDNA by examining the progeny from reciprocal crosses of Pelargonium zonale and P. inquinans using nucleotide sequence polymorphisms of selected pt and mt genes. Sequence analysis of the progeny revealed biparental inheritance of both pt and mtDNA. Hybrid plants exhibited variegation: our data demonstrate that the inquinans chloroplasts, but not the zonale chloroplasts bleach out, presumably due to incompatibility of the former with the hybrid nuclear genome. Different distribution of maternal and paternal sequences could be observed in different sectors of the same leaf, in different leaves of the same plant, and in different plants indicating random segregation and sorting-out of maternal and paternal plastids and mitochondria in the hybrids. The substantial transmission of both maternal and paternal mitochondria to the progeny turns Pelargonium into a particular interesting subject for studies on the inheritance, segregation and recombination of mt genes.  相似文献   

19.
Hybrid zones have yielded considerable insight into many evolutionary processes, including speciation and the maintenance of species boundaries. Presented here are analyses from a hybrid zone that occurs among three salamanders –Plethodon jordani, Plethodon metcalfi and Plethodon teyahalee– from the southern Appalachian Mountains. Using a novel statistical approach for analysis of non‐clinal, multispecies hybrid zones, we examined spatial patterns of variation at four markers: single‐nucleotide polymorphisms (SNPs) located in the mtDNA ND2 gene and the nuclear DNA ILF3 gene, and the morphological markers of red cheek pigmentation and white flecks. Concordance of the ILF3 marker and both morphological markers across four transects is observed. In three of the four transects, however, the pattern of mtDNA is discordant from all other markers, with a higher representation of P. metcalfi mtDNA in the northern and lower elevation localities than is expected given the ILF3 marker and morphology. To explore whether climate plays a role in the position of the hybrid zone, we created ecological niche models for P. jordani and P. metcalfi. Modelling results suggest that hybrid zone position is not determined by steep gradients in climatic suitability for either species. Instead, the hybrid zone lies in a climatically homogenous region that is broadly suitable for both P. jordani and P. metcalfi. We discuss various selective (natural selection associated with climate) and behavioural processes (sex‐biased dispersal, asymmetric reproductive isolation) that might explain the discordance in the extent to which mtDNA and nuclear DNA and colour‐pattern traits have moved across this hybrid zone.  相似文献   

20.
Secondary contact between closely related taxa routinely occurs during postglacial migrations. After initial contact, the location of hybrid zones may shift geographically or remain spatially stable over time in response to various selective pressures or neutral processes. Studying the extent and direction of introgression using markers having contrasted levels of gene flow can help unravel the historical dynamics of hybrid zones. Thanks to their contrasted maternal and paternal inheritance, resulting in different levels of gene flow for mitochondrial and chloroplast DNA (mtDNA and cpDNA), the Pinaceae stand out as a relevant biological model for this purpose. The objective of the study was to assess whether the hybrid zone between Abies balsamea and Abies lasiocarpa (two largely distributed Pinaceae) has moved or remained stable over time by analysing the distribution of cytoplasmic DNA variation as well as published palaeobotanical data. Interspecific gene flow was higher for cpDNA than mtDNA markers; hence, the geographic distribution of mitotypes was more congruent with species distributions than chlorotypes. This genetic signature was contrary to expectations under a moving hybrid zone scenario, as well as empirical observations in other conifers. Genetic evidence for this rare instance of stable hybrid zone was corroborated by the colonization chronology derived from published fossil data, indicating that the two fir species initially came into contact in the area corresponding to the current sympatric zone 11 kyr ago. While an explanatory analysis suggested the putative influence of various environmental factors on the relative abundance of cytoplasmic genome combinations, further research appears necessary to assess the role of both demographic history and selective factors in driving the dynamics of hybrid zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号