首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Short- and long-term responses of inorganic N pools and plant-atmosphere NH(3) exchange to changes in external N supply were investigated in 11-week-old plants of two grass species, Lolium perenne and Bromus erectus, characteristic of N-rich and N-poor grassland ecosystems, respectively. A switch of root N source from NO(-)(3)to NH(4)(+) caused within 3 h a 3- to 6-fold increase in leaf apoplastic NH(4)(+) concentration and a simultaneous decrease in apoplastic pH of about 0.4 pH units in both species. The concentration of total extractable leaf tissue NH(4)(+) also increased two to three times within 3 h after the switch. Removal of exogenous NH(4)(+) caused the apoplastic NH(4)(+) concentration to decline back to the original level within 24 h, whereas the leaf tissue NH(4)(+)concentration decreased more slowly and did not reach the original level in 48 h. After growing for 5 weeks with a steady-state supply of NO(-)(3)or NH(4)(+), L. perenne were in all cases larger, contained more N, and utilized the absorbed N more efficiently for growth than B. erectus, whereas the two species behaved oppositely with respect to tissue concentrations of NO(-)(3), NH(4)(+), and total N. Ammonia compensation points were higher for B. erectus than for L. perenne and were in both species higher for NH(4)(+)- than for NO(-)(3)-grown plants. Steady-state levels of apoplastic NH(4)(+), tissue NH(4)(+), and NH(3) emission were significantly correlated. It is concluded that leaf apoplastic NH(4)(+) is a highly dynamic pool, closely reflecting changes in the external N supply. This rapid response may constitute a signaling system coordinating leaf N metabolism with the actual N uptake by the roots and the external N availability.  相似文献   

2.
Predicting future plant and ecosystem responses to elevated CO(2) also requires an understanding of the role of other factors, especially soil nitrogen. This is particularly challenging for global aridlands where total N and the relative amounts of nitrate and ammonia vary both spatially and seasonally. We measured gas exchange and primary and secondary C metabolites in seedlings of two dominant aridland shrub species (Prosopis flexuosa [S America] and P. glandulosa [N America]) grown at ambient (350 ppm) or elevated (650 ppm) CO(2) and nitrogen at two levels (low [0.8 mM] and high [8.0 mM]) and at either 1 : 1 or 3 : 1 nitrate to ammonia. Whereas elevated CO(2) increased assimilation rate, water use efficiency, and primary carbon metabolites in both species, these increases were strongly contingent upon nitrogen availability. Elevated CO(2) did not increase secondary metabolites (i.e., phenolics). For these important aridland species, the effects of elevated CO(2) are strongly influenced by nitrogen availability and to a lesser extent by the relative amounts of nitrate and ammonia supplied, which underscores the importance of both the amount and chemical composition of soil nitrogen in mediating the potential responses of seedling growth and establishment of aridland plants under future CO(2)-enriched atmospheres.  相似文献   

3.
The NH(4)(+) and NO(3)(-) uptake kinetics by Typha latifolia L. were studied after prolonged hydroponics growth at constant pH 3.5, 5.0, 6.5 or 7.0 and with NH(4)(+) or NO(3)(-) as the sole N-source. In addition, the effects of pH and N source on H(+) extrusion and adenine nucleotide content were examined. Typha latifolia was able to grow with both N sources at near neutral pH levels, but the plants had higher relative growth rates, higher tissue concentrations of the major nutrients, higher contents of adenine nucleotides, and higher affinity for uptake of inorganic nitrogen when grown on NH(4)(+). Growth almost completely stopped at pH 3.5, irrespective of N source, probably as a consequence of pH effects on plasma membrane integrity and H(+) influx into the root cells. Tissue concentrations of the major nutrients and adenine nucleotides were severely reduced at low pH, and the uptake capacity for inorganic nitrogen was low, and more so for NO(3)(-)-fed than for NH(4)(+)-fed plants. The maximum uptake rate, V(max), was highest for NH(4)(+) at pH 6.5 (30.9 micro mol h(-1) g(-1) root dry weight) and for NO(3)(-) at pH 5.0 (31.7 micro mol h(-1) g(-1) root dry weight), and less than 10% of these values at pH 3.5. The affinity for uptake as estimated by the half saturation constant, K((1/2)), was lowest at low pH for NH(4)(+) and at high pH for NO(3)(-). The changes in V(max) and K((1/2)) were thus consistent with the theory of increasing competition between cations and H(+) at low pH and between anions and OH(-) at high pH. C(min) was independent of pH, but slightly higher for NO(3)(-) than for NH(4)(+) (C(min)(NH(4)(+)) approximately 0.8 mmol m(-3); C(min)(NO(3)(-)) approximately 2.8 mmol m(-3)). The growth inhibition at low pH was probably due to a reduced nutrient uptake and a consequential limitation of growth by nutrient stress. Typha latifolia seems to be well adapted to growth in wetland soils where NH(4)(+) is the prevailing nitrogen compound, but very low pH levels around the roots are very stressful for the plant. The common occurrence of T. latifolia in very acidic areas is probably only possible because of the plant's ability to modify pH-conditions in the rhizosphere.  相似文献   

4.
The underlying mechanisms that enable plant species to coexist are poorly understood. Complementarity in resource use is among the major mechanisms proposed that could favor species coexistence but is insufficiently documented. In alpine soil, low temperatures are a major constraint for the supply of plant nitrogen. We carried out (15)N labeling of soil mineral N to determine to what extent four major species of a subalpine community compete for N, or develop ionic (NH(4)(+) vs. NO(3)(-)) or temporal complementarity. The Poaceae took up much more (15)N per soil area unit than the ericaceous species, and all species displayed three major strategies in exploiting (15)N: (1) uptake mainly early in the growing season (Vaccinium myrtillus), (2) uptake at a slow and similar rate throughout the growing season (Rhododendron ferrugineum), and (3) uptake at high rates over the growing season (Festuca eskia and Nardus stricta). However, while F. eskia used (15)NH(4)(+) mainly early and (15)NO(3)(-) mainly late in the growing season, the reverse was observed for N. stricta. Taking into account (15)N dilution in soil NH(4)(+) and NO(3)(-) pools, we calculated that NH(4)(+) provided more than 80% of the mineral N uptake in Ericaceae and about 60% in grasses. Together, such ionic and temporal complementarity would reduce competition between species and could be a major mechanism promoting species diversity.  相似文献   

5.
Krouk G  Tillard P  Gojon A 《Plant physiology》2006,142(3):1075-1086
The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity NO(3)(-) transport system (HATS) that plays a crucial role in NO(3)(-) uptake by the plant. Although NRT2.1 was known to be induced by NO(3)(-) and feedback repressed by reduced nitrogen (N) metabolites, NRT2.1 is surprisingly up-regulated when NO(3)(-) concentration decreases to a low level (<0.5 mm) in media containing a high concentration of NH(4)(+) or Gln (>or=1 mm). The NRT3.1 gene, encoding another key component of the HATS, displays the same response pattern. This revealed that both NRT2.1 and NRT3.1 are coordinately down-regulated by high external NO(3)(-) availability through a mechanism independent from that involving N metabolites. We show here that repression of both genes by high NO(3)(-) is specifically mediated by the NRT1.1 NO(3)(-) transporter. This mechanism warrants that either NRT1.1 or NRT2.1 is active in taking up NO(3)(-) in the presence of a reduced N source. Under low NO(3)(-)/high NH(4)(+) provision, NRT1.1-mediated repression of NRT2.1/NRT3.1 is relieved, which allows reactivation of the HATS. Analysis of atnrt2.1 mutants showed that this constitutes a crucial adaptive response against NH(4)(+) toxicity because NO(3)(-) taken up by the HATS in this situation prevents the detrimental effects of pure NH(4)(+) nutrition. It is thus hypothesized that NRT1.1-mediated regulation of NRT2.1/NRT3.1 is a mechanism aiming to satisfy a specific NO(3)(-) demand of the plant in relation to the various specific roles that NO(3)(-) plays, in addition to being a N source. A new model is proposed for regulation of the HATS, involving both feedback repression by N metabolites and NRT1.1-mediated repression by high NO(3)(-).  相似文献   

6.
An experiment was designed to resolve two largely unaddressed questions about the turnover of N in soils. One is the influence of microbial growth rate on mobilization and remineralization of cellular N. The other is to what extent heterotrophic immobilization of NO(3)(-) is controlled by the soil concentration of NH(4)(+). Bacteria were extracted from a deciduous forest soil and inoculated into an aqueous medium. Various N pool dilution/enrichment experiments were carried out to: (1) calculate the gross N immobilization and remineralization rates; (2) investigate their dependence on NH(4)(+)and NO(3)(-) concentrations; (3) establish the microbial preference for NH(4)(+)and NO(3)(-) depending on the NH(4)(+)/NO(3)(-) concentration ratio. Remineralization of microbial N occurred mainly at high growth rates and NH(4)(+) concentrations. There was a positive correlation between NH(4)(+) immobilization and remineralization rates, and intracellular recycling of N seemed to be an efficient way for bacteria to withstand low inorganic N concentrations. Thus, extensive remineralization of microbial N is likely to occur only when environmental conditions promote high growth rates. The results support previous observations of high NO(3)(-) immobilization rates, especially at low NH(4)(+) concentrations, but NO(3)(-) was also immobilized at high NH(4) concentrations. The latter can be understood if part of the microbial community has a preference for NO(3)(-) over NH(4)(+).  相似文献   

7.
Lu YX  Li CJ  Zhang FS 《Annals of botany》2005,95(6):991-998
BACKGROUND AND AIMS: Ammonium can result in toxicity symptoms in many plants when it is supplied as the sole source of N. In this work, influences of different nitrogen forms at two levels (2 and 15 mm N) on growth, water relations and uptake and flow of potassium were studied in plants of Nicotiana tabacum 'K 326'. METHODS: Xylem sap from different leaves was collected from 106-d-old tobacco plants cultured in quartz sand by application of pressure to the root system. Whole-shoot transpiration for each of the treatments was measured on a daily basis by weight determination. KEY RESULTS: Total replacement of NO(3)(-)N by NH(4)(+)-N caused a substantial decrease in dry weight gain, even when plants grew under nutrient deficiency. Increasing nutrient concentration resulted in a greater net dry weight gain when nitrogen was supplied as NO(3)(-) or NH(4)NO(3), but resulted in little change when nitrogen was supplied as NH(4)(+). NH(4)(+)-N as the sole N-source also caused reduction in transpiration rate, changes in plant WUE (which depended on the nutrient levels) and a decrease in potassium uptake. However, the amount of xylem-transported potassium in the plants fed with NH(4)(+) was not reduced: it was 457 % or 596 % of the potassium currently taken up at low or high nutrient level, respectively, indicating a massive export from leaves and cycling of potassium in the phloem. CONCLUSIONS: Ammonium reduces leaf stomatal conductance of tobacco plants. The flow and partitioning of potassium in tobacco plants can be changed, depending on the nitrogen forms and nutrient levels.  相似文献   

8.
9.
Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed.  相似文献   

10.
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.  相似文献   

11.
Nitrification involves the sequential biological oxidation of reduced nitrogen species such as ammonium-nitrogen (NH(4)(+)-N) to nitrite-nitrogen (NO(2)(-)-N) and nitrate-nitrogen (NO(3)(-)-N). The adequacy of modeling NH(4)(+)-N to NO(3)(-)-N oxidation as one composite biochemical reaction was examined at different relative dynamics of NH(4)(+)-N to NO(2)(-)-N and NO(2)(-)-N to NO(3)(-)-N oxidation. NH(4)(+)-N to NO(2)(-)-N oxidation and NO(2)(-)-N to NO(3)(-)-N oxidation by a mixed nitrifying consortium were uncoupled using selective inhibitors allylthiourea and sodium azide. The kinetic parameters of NH(4)(+)-N to NO(2)(-)-N oxidation (q(max,ns) and K(S,ns)) and NO(2)(-)-N to NO(3)(-)-N oxidation (q(max,nb) and K(S,nb)) were determined by a rapid extant respirometric technique. The stoichiometric coefficients relating nitrogen removal, oxygen uptake and biomass synthesis were derived from an electron balanced equation. NH(4)(+)-N to NO(2)(-)-N oxidation was not affected by NO(2)(-)-N concentrations up to 100 mg NO(2)(-)-N L(-1). NO(2)(-)-N to NO(3)(-)-N oxidation was noncompetitively inhibited by NH(4)(+)-N but was not inhibited by NO(3)(-)-N concentrations up to 250 mg NO(3)(-)-N L(-1). When NH(4)(+)-N to NO(2)(-)-N oxidation was the sole rate-limiting step, complete NH(4)(+)-N to NO(3)(-)-N oxidation was adequately modeled as one composite process. However, when NH(4)(+)-N to NO(2)(-)-N oxidation and NO(2)(-)-N to NO(3)(-)-N oxidation were both rate limiting, the estimated lumped kinetic parameter estimates describing NH(4)(+)-N to NO(3)(-)-N oxidation were unrealistically high and correlated. These findings indicate that the use of single-step models to describe batch NH(4)(+) oxidation yields erroneous kinetic parameters when NH(4)(+)-to-NO(2)(-) oxidation is not the sole rate-limiting process throughout the assay. Under such circumstances, it is necessary to quantify NH(4)(+)-N to NO(2)(-)-N oxidation and NO(2)(-)-N to NO(3)(-)-N oxidation, independently.  相似文献   

12.
Although an increasing number of studies show that many plant species have the capacity to take up amino acids from exogenous sources, the importance of such uptake for plant nitrogen nutrition is largely unknown. Moreover, little is known regarding metabolism and distribution of amino acid-N following uptake or of the regulation of these processes in response to plant nitrogen status. Here results are presented from a study following uptake, metabolism, and distribution of nitrogen from NO(3)(-) NH(4)(+), Glu, or Ala in Scots pine (Pinus sylvestris L). In a parallel experiment, Ala uptake, processing, and shoot allocation were also monitored following a range of pretreatments intended to alter plant C- and N-status. Uptake data, metabolite profiles, N fluxes through metabolite pools and tissues, as well as alanine aminotransferase activity are presented. The results show that uptake of the organic N sources was equal to or larger than NH(4)(+) uptake, while NO(3)(-) uptake was comparatively low. Down-regulation of Ala uptake in response to pretreatments with NH(4)NO(3) or methionine sulphoximine (MSX) indicates similarities between amino acid and inorganic N uptake regulation. N derived from amino acid uptake exhibited a rapid flux through the amino acid pool following uptake. Relative shoot allocation of amino acid-N was equal to that of NH(4)(+) but smaller than for NO(3)(-) Increased N status as well as MSX treatment significantly increased relative shoot allocation of Ala-N suggesting that NH(4)(+) may have a role in the regulation of shoot allocation of amino acid-N.  相似文献   

13.
We investigated the effects of changes in soil C and N availability on N mineralization, nitrification, denitrification, NH(3) volatilization, and soil respiration in the Mojave Desert. Results indicate a C limitation to microbial N cycling. Soils from underneath the canopies of Larrea tridentata (DC.) Cov., Pleuraphis rigida Thurber, and Lycium spp. exhibited higher rates of CO(2 ) flux, lower rates of NH(3) volatilization, and a decrease in inorganic N (NH(4)(+)-N and NO(3)(-)-N) with C addition. In addition to C limitation, soils from plant interspaces also exhibited a N limitation. Soils from all locations had net immobilization of N over the course of a 15-day laboratory incubation. However, soils from interspaces had lower rates of net nitrification and potential denitrification compared to soils from under plant canopies. The response to changes in C availability appears to be a short-term increase in microbial immobilization of inorganic N. Under controlled conditions, and over a longer time period, the effects of C and N availability appear to give way to larger differences due to spatial location. These findings have implications for ecosystems undergoing changes in soil C and N availability due to such processes as desertification, exotic species invasions, or elevated atmospheric CO(2) concentration.  相似文献   

14.
Catasetum fimbriatum is an epiphytic orchid from South America that has been used for 15 years as a model plant for metabolic and developmental studies in our laboratory. In this work, C. fimbriatum plants were aseptically grown with 6 mol m(-3) of either glutamine or inorganic nitrogen forms (NO(3)(-):NH(4)(+) ratios). The highest biomass accumulation was found in plants supplied with glutamine; no significant difference was observed in plants incubated in the presence of inorganic nitrogen sources. Nitrogen assimilation was limited in the presence NO(3)(-) as a sole nitrogen source. C. fimbriatum did not accumulate NO(3)(-) and very low rates of in vivo nitrate reductase activity were observed. Most nitrate reductase activity (70%) was detected in the 2 cm apical roots. Nitrate-treated plants exhibited relatively lower amounts of free amino-N, chlorophyll and free NH(4)(+) contents and higher soluble sugar contents than the NH(4)(+)-treated plants. While shoot glutamine synthetase activity was only slightly affected by nitrogen sources, root glutamine synthetase activity was not modified by any nitrogen form. Glutamate dehydrogenase-NADH activity in shoot tissues was not influenced by any nitrogen source. However, the glutamate dehydrogenase-NADH activity in roots was enhanced when NH(4)(+) tissue contents was augmented by increasing NH(4)(+) in the medium and by the presence of glutamine. Our results strongly suggest that organic nitrogen and NH(4)(+) are probably the most important nitrogen sources to C. fimbriatum plants.  相似文献   

15.
Ammonium to nitrate ratios of 0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM were tested to determine the optimal NH(4)(+) :NO(3)(-) ratio for improving biomass and bioactive compound production in Eleutherococcus koreanum Nakai adventitious roots using 3-L bulb-type bubble bioreactors. A high ammonium nitrogen ratio had a negative effect on root growth, and the highest fresh and dry weights were obtained when NH(4)(+):NO(3)(-) ratios were 5:25 and 10:20 (mM) after 5 weeks of culture. Although the total production of eleutherosides B and E was slightly higher at the 10:20 ratio than at the 5:25 ratio (NH(4)(+):NO(3)(-)), we proposed that the optimal NH(4)(+):NO(3)(-) ratio was 5:25 mM. This ratio achieved both the highest total production of five target bioactive compounds (eleutherosides B and E, chlorogenic acid, total phenolics, and flavonoids) and the highest root biomass. Furthermore, increasing NH(4)(+):NO(3)(-) ratios to 10:20 decreased pH in the medium, interrupted the absorption of essential minerals from the culture medium, and resulted in low biomass and increased relative oxidative stress levels, which were evaluated by determining 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Therefore, nitrate rather than ammonium nitrogen was more essential not for only biomass production but also for bioactive compound production in E. koreanum adventitious root cultures. The optimal nitrogen source ratio produced 5.63 g L(-1) of biomass and 24.41 mg of the five total bioactive compounds per gram of biomass (dry weight basis). The development of such in vitro culture technology will benefit the pilot-scale production of E. koreanum-based bioactive compounds for commercialization.  相似文献   

16.
The effects of nitrogen source (N(2), NO(3)(-) and NH(4)(+)) on scytonemin synthesis were investigated in the heterocystous cyanobacterium Nostoc punctiforme PCC 73102. With the required UVA radiation included, Nostoc synthesized three to seven times more scytonemin while fixing nitrogen than when utilizing nitrate or ammonium. A similar increase in scytonemin synthesis occurred when nitrate or ammonium became depleted by growth and Nostoc switched to diazotrophic metabolism with the differentiation of heterocysts. In addition, UVA-exposed cultures grown in medium with both NO(3)(-) and NH(4)(+) synthesized some scytonemin but synthesis increased when NH(4)(+) was depleted and growth had become dependent on NO(3)(-) reduction. Although the mechanism is unclear, these results suggest that the greater the restriction in nitrogen accessibility, the greater the production of scytonemin. Perhaps the entire response may be an interaction between this restriction and a resultant sensitivity to UV radiation that acts as a cue for determining the level of scytonemin synthesis. Scytonemin is a stable UVR screening compound and appears to be synthesized by cyanobacteria as a long-term solution for reducing UVR exposure and damage, but mainly or solely, when metabolic activity is absent. It is likely that during metabolic resurgence, the presence of a dense scytonemin sheath would facilitate the recovery process without the need for active defenses against UV radiation.  相似文献   

17.
18.
Resources in the Great Basin of western North America often occur in pulses, and plant species must rapidly respond to temporary increases in water and nutrients during the growing season. A field study was conducted to evaluate below ground responses of Artemisia tridentata and Agropyron desertorum, common Great Basin shrub and grass species, respectively, to simulated 5-mm (typical summer rain) and 15-mm (large summer rain) summer rainfall events. The simulated rainfall was labeled with K(15)NO(3) so that timing of plant nitrogen uptake could be monitored. In addition, soil NH(4)(+) and NO(3)(-) concentrations and physiological uptake capacities for NO(3)(-) and NH(4)(+) were determined before and after the rainfall events. Root growth in the top 15 cm of soil was monitored using a minirhizotron system. Surprisingly, there was no difference in the amount of labeled N acquired in response to the two rainfall amounts by either species during the 7-day sample period. However, there were differences between species in the timing of labeled N uptake. The N label was detected in above ground tissue of Agropyron within 1 h of the simulated rainfall events, but not until 24 h after the rainfall in Artemisia. For both Agropyron and Artemisia, root uptake capacity was similarly affected by the 5-mm and 15-mm rainfall. There was, however, a greater increase in uptake capacity for NH(4)(+) than for NO(3)(-), and the 15-mm event resulted in a longer response. No root growth occurred in either species in response to either rainfall event during this 8-day period. The results of this study indicate that these species are capable of utilizing nitrogen pulses following even small summer rainfall events during the most stressful period of the summer and further emphasize the importance of small precipitation events in arid systems.  相似文献   

19.
The goal of this study was to determine the interaction of mycorrhizae and two N sources, ammonium (NH(4)(+)) and nitrate (NO(3)(-)), on the growth of a coastal sage scrub (CSS) species, Artemisia californica, and an exotic annual grass, Bromus madritensis ssp. rubens. Anthropogenic nitrogen deposition may be influencing the decline of CSS and replacement by exotic grasses, but the extent to which mycorrhizae are involved in shrubland decline is unknown. NO(3)(-) is the dominant form of deposition in southern California, although the native, uneutrophied soils have a greater concentration of NH(4)(+). Seeds of each species were germinated in pots of sterile soil, inoculated with native soil containing mycorrhizal spores and infective root fragments, and fertilized with 50 μg/g of either NO(3)(-) or NH(4)(+). NH(4)(+) enhanced the growth of both mycorrhizal species, while NO(3)(-) did not. Control plants of B. madritensis under low N had a significant response to mycorrhizae, but A. californica did not. Nitrate increased the growth of nonmycorrhizal A. californica as much as the mycorrhizal NH(4)(+)-treated plants. There is no evidence in this study to suggest that the decline of A. californica or increase in B. madritensis is due to a mycorrhizal response to NO(3)(-). Other life history traits of the two species must be used to explain the invasive behavior of the annual grass. Mycorrhizae may be more important in controlling plant growth in native uneutrophied soils dominated by NH(4)(+) rather than NO(3)(-).  相似文献   

20.
红豆草与土壤氮含量对大气二氧化碳浓度升高的响应   总被引:1,自引:0,他引:1  
在封闭的植物培养箱中,通过盆栽实验,研究了红豆草和土壤氮含量对CO2浓度增加的响应.结果表明,与正常CO2浓度(355~370 μmol·mol-1)相比,CO2浓度升高(700 μmol·mol-1),植物生物量增加25.1%(P<0.01),但植物体氮浓度降低25.3%(P<0.001),植物全氮没有显著的变化.经3个月盆栽实验后,与原始土壤相比,两种CO2浓度处理土壤全N、NO3--N和NH4+-N都有所降低,而土壤微生物氮则显著增加,这可能与植物生长有关.不同CO2浓度处理土壤NH4+-N浓度基本一致,但在高CO2浓度下,土壤NO3--N浓度显著降低,而微生物生物氮显著增加.对整个土壤-植物系统而言,盆栽实验后,整个系统全氮有少量增加,但变化不显著,特别是在高CO2浓度条件下,土壤-植物系统全氮最大,这可能与培养材料红豆草为豆科植物,而且在高CO2浓度下生物量增加,导致氮的固定量增加有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号