首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiply sired fruits provide unambiguous evidence that pollen from two or more donors was deposited on a stigma and successfully fertilized ovules. Such multiple paternity within fruits can have important consequences for both parental and offspring fitness, but little is known about the frequency of multiple paternity or the mechanisms causing it. In this study we quantify the extent of multiple paternity in replicate experimental arrays of Mimulus ringens (square-stem monkeyflower) and use observations of pollinator behavior to infer mechanisms generating multiply sired fruits. In each array, floral displays were trimmed to two, four, eight, or 16 flowers per plant to span the range of display sizes observed in nature. In our sample of 204 fruits, more than 95% had two or more outcross pollen donors. The number of sires per fruit averaged 4.63 ± 0.10 (mean ± 1 SE), including selfs, and did not vary significantly with floral display treatment. Patterns of bumble bee foraging, combined with limited pollen carryover, suggest that observed levels of multiple paternity cannot be fully explained by single probes that deposited mixed pollen loads. Multiple probes to flowers, each delivering pollen from 1-3 different sires, are more likely to have caused the observed patterns. These sequential visits may reduce the potential for pollen competition and female choice based on pollen tube growth rate.  相似文献   

2.
3.
The flowering plants are one of the most phenotypically varied and wide-ranging groups of organisms on earth, and yet, we have limited understanding of the contribution of animal pollinators to the diversification of floral form. To explore the interaction between variation in floral form and pollinator behavior, we observed the foraging behavior of bumblebees (Bombus impatiens) when presented with both wild-type Mimulus lewisii plants and each of three chemically induced single-locus mutants with altered floral phenotypes, including loss of the three lower petals, loss of nectar guides, and a change in petal color patterning. We found that each of the mutants attracted successful pollinator visits at just 29–80% of the rate relative to wild-type flowers, suggesting that effective recruitment of bumblebee pollinators requires the landing platform provided by the lower petals, and visual cues provided by the nectar guides and petal color pattern. Since single-locus recessive mutations are capable of ablating the lower petals, nectar guides, and color pattern, such changes in floral form provide insight into the driving forces behind plant adaptation.  相似文献   

4.
Premise of the study: Microsatellite markers were isolated and characterized in Mimulus ringens (Phrymaceae), a herbaceous wetland perennial, to facilitate studies of mating patterns and population genetic structure. • Methods and Results: A total of 42 polymorphic loci were identified from a sample of 24 individuals from a single population in Ohio, USA. The number of alleles per locus ranged from two to nine, and median observed heterozygosity was 0.435. • Conclusions: This large number of polymorphic loci will enable researchers to quantify male fitness, patterns of multiple paternity, selfing, and biparental inbreeding in large natural populations of this species. These markers will also permit detailed study of fine-scale patterns of genetic structure.  相似文献   

5.
Movement of pollinators between coflowering plant species may influence conspecific pollen deposition and seed set. Interspecific pollinator movements between native and showy invasive plants may be particularly detrimental to the pollination and reproductive success of native species. We explored the effects of invasive Lythrum salicaria on the reproductive success of Mimulus ringens, a wetland plant native to eastern North America. Pollinator flights between these species significantly reduced the amount of conspecific pollen deposited on Mimulus stigmas and the number of seeds in Mimulus fruits, suggesting that pollen loss is an important mechanism of competition for pollination. Although pollen loss is often attributed to pollen wastage on heterospecific floral structures, our novel findings suggest that grooming by bees as they forage on a competitor may also significantly reduce outcross pollen export and seed set in Mimulus ringens.  相似文献   

6.
Hummingbird flowers are typically red in color but the reasons for this are not well understood. Relatively few studies have examined hummingbird flower color preferences under natural conditions in which flower color varies within a species. We recorded hummingbird visitation rates to flowers that vary in color from yellow to red in a natural hybrid population between red‐ and yellow‐flowered Mimulus aurantiacus subspecies. We also examined whether there were any correlations between color and flower size or nectar content. Finally, we reviewed the literature on hummingbird color choice tests using feeders and flowers. There were no correlations in this population between flower color and flower size, nectar volume, or sugar concentration. Nevertheless, hummingbirds undervisited the two most yellow color classes, overvisited orange flowers, and visited the two most red color classes in proportion to their frequency in the population. While Hummingbirds preferred flowers expressing red pigments to those that did not, the flowers with the most red hue were not the most attractive, as has been observed in similar studies with other species of Mimulus. While feeder studies generally fail to show hummingbird preference for red, all studies using flowers, including those that control all floral traits other than color, find consistent preference for red. Experiments are suggested that might help disentangle hypotheses for why hummingbirds exhibit this preference.  相似文献   

7.
8.
? Premise of the study: Shoot architecture is a fundamentally developmental aspect of plant biology with implications for plant form, function, reproduction, and life history evolution. Mimulus guttatus is morphologically diverse and becoming a model for evolutionary biology. Shoot architecture, however, has never been studied from a developmental perspective in M. guttatus. ? Methods: We examined the development of branches and flowers in plants from two locally adapted populations of M. guttatus with contrasting flowering times, life histories, and branch numbers. We planted second-generation seed in growth chambers to control for maternal and environmental effects. ? Key results: Most branches occurred at nodes one and two of the main axis. Onset of branching occurred earlier and at a greater frequency in perennials than in annuals. In perennials, almost all flowers occurred at the fifth or more distal nodes. In annuals, most flowers occurred at the third and more distal nodes. Accessory axillary meristems and higher-order branching did not influence shoot architecture. ? Conclusions: We found no evidence for trade-offs between flowers and branches because axillary meristem number was not limiting: a large number of meristems remained quiescent. If, however, quiescence is a component of meristem allocation strategy, then meristems may be limited despite presence of quiescent meristems. At the two basalmost nodes, branch number was determined by mechanisms governing either meristem initiation or outgrowth, rather than flowering vs. branching. At the third and more distal nodes, heterochronic processes contributed to flowering time and branch number differences between populations.  相似文献   

9.
Pollinator foraging patterns and the dynamics of pollen transport influence the quality and diversity of flowering plant mating opportunities. For species pollinated by grooming pollinators, such as bees, the amount of pollen carried between a donor flower and potential recipient flowers depends on how grooming influences pollen transfer. To investigate the relationship between grooming and pollen‐mediated gene dispersal, we studied bumblebee (Bombus fervidus) foraging behavior and resulting gene dispersal in linear arrays of Mimulus ringens. Each of the 14 plants in an array had a unique multilocus genotype, facilitating unambiguous assignment of paternity to 1050 progeny. Each plant was trimmed to a single flower so that pollinator movements could be linked directly to resulting gene dispersal patterns. Pollen‐mediated gene dispersal was very limited. More than 95% of the seeds sired by a donor flower were distributed over the first three recipient flowers in the visitation sequence. However, seeds were occasionally sired on flowers visited later in the pollinator's floral visitation sequence. Intensive grooming immediately following pollen removal from a donor flower significantly increased the decay rate of the donor flower's gene dispersal curve. These results suggest that the frequency and relative intensity of grooming can have significant effects on patterns of pollen‐mediated gene dispersal from individual pollen donors.  相似文献   

10.
Evolutionists have long recognized the role of reproductive isolation in speciation, but the relative contributions of different reproductive barriers are poorly understood. We examined the nature of isolation between Mimulus lewisii and M. cardinalis, sister species of monkeyflowers. Studied reproductive barriers include: ecogeographic isolation; pollinator isolation (pollinator fidelity in a natural mixed population); pollen competition (seed set and hybrid production from experimental interspecific, intraspecific, and mixed pollinations in the greenhouse); and relative hybrid fitness (germination, survivorship, percent flowering, biomass, pollen viability, and seed mass in the greenhouse). Additionally, the rate of hybridization in nature was estimated from seed collections in a sympatric population. We found substantial reproductive barriers at multiple stages in the life history of M. lewisii and M. cardinalis. Using range maps constructed from herbarium collections, we estimated that the different ecogeographic distributions of the species result in 58.7% reproductive isolation. Mimulus lewisii and M. cardinalis are visited by different pollinators, and in a region of sympatry 97.6% of pollinator foraging bouts were specific to one species or the other. In the greenhouse, interspecific pollinations generated nearly 50% fewer seeds than intraspecific controls. Mixed pollinations of M. cardinalis flowers yielded >75% parentals even when only one-quarter of the pollen treatment consisted of M. cardinalis pollen. In contrast, both species had similar siring success on M. lewisii flowers. The observed 99.915% occurrence of parental M. lewisii and M. cardinalis in seeds collected from a sympatric population is nearly identical to that expected, based upon our field observations of pollinator behavior and our laboratory experiments of pollen competition. F1 hybrids exhibited reduced germination rates, high survivorship and reproduction, and low pollen and ovule fertility. In aggregate, the studied reproductive barriers prevent, on average, 99.87% of gene flow, with most reproductive isolation occurring prior to hybrid formation. Our results suggest that ecological factors resulting from adaptive divergence are the primary isolating barriers in this system. Additional studies of taxa at varying degrees of evolutionary divergence are needed to identify the relative importance of pre- and postzygotic isolating mechanisms in speciation.  相似文献   

11.
Most models of mating system evolution predict mixed mating to be unstable, although it is commonly reported from nature. Ecological interactions with mutualistic pollinators can help account for this discrepancy, but antagonists such as herbivores are also likely to play a role. In addition, inbreeding can alter ecological interactions and directly affect selfing rates, which may also contribute to maintaining mating system variation. We explored herbivore and inbreeding effects on pollinator behavior and selfing rates in Mimulus guttatus. First, individual spittlebug (Philaenus spumarius) herbivores were applied to native plants in two populations. Spittlebugs reduced flower size, increased anther-stigma distance, and increased selfing rates. A second experiment factorially crossed spittlebug treatment with inbreeding history (self- vs. cross-fertilized), using potted plants in arrays. Spittlebugs did not affect pollinator behavior, but they reduced flower size and nearly doubled the selfing rate. Inbreeding reduced the frequency of pollinator visits and increased flower-handling time, and this may be the first report that inbreeding affects pollinator behavior. Selfing rates of inbred plants were reduced by one half, which may reflect early inbreeding depression or altered pollinator behavior. The contrasting effects of herbivory and inbreeding on selfing rates may help maintain mating system variation in M. guttatus.  相似文献   

12.
Clonality is a common phenomenon in plants, allowing genets to persist asexually for much longer periods of time than ramets. The relative frequency of sexual vs. asexual reproduction determines long‐term dominance and persistence of clonal plants at the landscape scale. One of the most familiar and valued clonal plants in North America is aspen (Populus tremuloides). Previous researchers have suggested that aspen in xeric landscapes of the intermountain west represent genets of great chronological age, maintained via clonal expansion in the near absence of sexual reproduction. We synthesized microsatellite data from 1371 ramets in two large sampling grids in Utah. We found a surprisingly large number of distinct genets, some covering large spatial areas, but most represented by only one to a few individual ramets at a sampling scale of 50 m. In general, multi‐ramet genets were spatially cohesive, although some genets appear to be fragmented remnants of much larger clones. We conclude that recent sexual reproduction in these landscapes is a stronger contributor to standing genetic variation at the population level than the accumulation of somatic mutations, and that even some of the spatially large clones may not be as ancient as previously supposed. Further, a striking majority of the largest genets in both study areas had three alleles at one or more loci, suggesting triploidy or aneuploidy. These genets tended to be spatially clustered but not closely related. Together, these findings substantially advance our understanding of clonal dynamics in western North American aspen, and set the stage for a broad range of future studies.  相似文献   

13.
ABSTRACT: BACKGROUND: The thirteen species of Dryopteris in North America have long been suspected of having undergone a complicated history of reticulate evolution via allopolyploid hybridization. Various explanations for the origins of the allopolyploid taxa have been suggested, and though most lines of evidence have supported the so-called "semicristata" hypothesis, contention over the group's history has continued in several recent, conflicting studies. RESULTS: Sequence data from nine plastid and two nuclear markers were collected from 73 accessions representing 35 species of Dryopteris. Sequences from each of the allopolyploids are most closely related to their progenitor species as predicted by the "semicristata" hypothesis. Allotetraploid D. campyloptera appears to be derived from a hybrid between diploid D. expansa and D. intermedia; D. celsa, from diploid D. ludoviciana x D. goldiana; and D. carthusiana and D. cristata, from diploid "D. semicristata" x D. intermedia and D. ludoviciana, respectively. Allohexaploid D. clintoniana appears to be derived from D. cristata x D.goldiana. The earliest estimated dates of formation of the allopolyploids, based on divergence time analyses, were within the last 6 Ma. We found no evidence for recurrent formation of any of the allopolyploids. The sexual allopolyploid taxa are derived from crosses between parents that show intermediate levels of genetic divergence relative to all pairs of potential progenitors. In addition, the four allotetraploids are transgressive with respect to geographic range relative to one or both of their parents (their ranges extend beyond those of the parents), suggesting that ecological advantages in novel habitats or regions may promote long-term regional coexistence of the hybrid taxa with their progenitors. CONCLUSIONS: This study provides the first thorough evaluation of the North American complex of woodferns using extensive sampling of taxa and genetic markers. Phylogenies produced from each of three datasets (one plastid and two nuclear) support the "semicristata" hypothesis, including the existence of a missing diploid progenitor, and allowed us to reject all competing hypotheses. This study demonstrates the value of using multiple, biparentally inherited markers to evaluate reticulate complexes, assess the frequency of recurrent polyploidization, and determine the relative importance of introgression vs. hybridization in shaping the histories of such groups.  相似文献   

14.
? Premise of study: Botanists have long been interested in the reasons for genetic variation among individuals, populations, and species of plants. The anthocyanin pathway is ideal for studying the evolution of such phenotypic variation. ? Methods: We used a combination of quantitative trait loci mapping and association studies to understand the genetic basis of variation in five anthocyanin phenotypes including calyx, corolla, and leaf coloration patterns that vary within and among populations of Mimulus guttatus. We then examined what genes might be responsible for this phenotypic variation and whether one of the traits, calyx spotting, is randomly distributed across the geographic range of the species. ? Key results: All five phenotypes in M. guttatus were primarily controlled by the same major locus (PLA1), which contains a tandem array of three R2R3-MYB genes known to be involved in the evolution of flower color in a related species of Mimulus. Calyx spotting was nonrandomly distributed across the range of M. guttatus and correlated with multiple climate variables. ? Conclusions: The results of this study suggest that variation in R2R3-MYB genes is the primary cause of potentially important anthocyanin phenotypic variation within and among populations of M. guttatus, a finding consistent with recent theoretical and empirical research on flower color evolution.  相似文献   

15.
The timing and effectiveness of pollinator visitation to flowers is an important factor influencing mating patterns and reproductive success. Multiple pollinator probes to a flower may increase both the quantity and genetic diversity of progeny, especially if single probes deposit insufficient pollen for maximal seed set or if the interval between probes is brief. When pollen carryover is limited, sequential pollen loads may also differ markedly in sire representation. We hypothesized that these conditions help explain high levels of multiple paternity in Mimulus ringens fruits. We documented all bee visits to individual flowers, quantified resulting seed set, and determined paternity for 20 seeds per fruit. Most (76%) flowers received multiple probes, and the interval between probes was usually <30 min. Flowers probed multiple times produced 44% more seeds than flowers probed once. All fruits were multiply sired. Flowers receiving a single probe averaged 3.12 outcross sires per fruit, indicating that single probes deposit pollen from several donors. Multiple paternity was even greater after three or more probes (4.92 outcross sires), demonstrating that sequential visits bring pollen from donors not represented in the initial probe.  相似文献   

16.
Nuclear DNA sequences from introns of the low-copy nuclear gene family encoding the second largest subunit of RNA polymerases and the ribosomal internal transcribed spacer (ITS) regions, combined with the psbE-petL spacer and the rps16 intron from the chloroplast genome were used to infer origins and phylogenetic relationships of North American polyploid Silene species and their closest relatives. Although the vast majority of North American Silene species are polyploid, which contrasts to the diploid condition dominating in other parts of the world, the phylogenetic analyses rejected a single origin of the North American polyploids. One lineage consists of tetraploid Silene menziesii and its diploid allies. A second lineage, Physolychnis s.l., consists of Arctic, European, Asian, and South American taxa in addition to the majority of the North American polyploids. The hexaploid S. hookeri is derived from an allopolyploidization between these two lineages. The tetraploid S. nivea does not belong to any of these lineages, but is closely related to the European diploid S. baccifera. The poor resolution within Physolychnis s.l. may be attributed to rapid radiation, recombination among homoeologues, homoplasy, or any combination of these factors. No extant diploid donors could be identified in Physolychnis s.l.  相似文献   

17.
18.
Chloroplast trnL/F and nuclear ribosomal ITS and ETS sequence data were used to analyze phylogenetic relationships among members of tribe Mimuleae (Scrophulariaceae) and other closely related families in Lamiales. The results of these analyses led to the following conclusions. (1) The Australian genera Glossostigma and Peplidium and the taxonomically isolated Phryma join four genera of tribe Mimuleae to form a well-supported clade that is distinct from other families in the Lamiales. We refer to that clade as the subfamily Phrymoideae. (2) The genera Mazus and Lancea (tribe Mimuleae) together form a well-supported clade that we recognize as the subfamily Mazoideae. Mazoideae is weakly supported as sister to Phrymoideae. We assign Mazoideae and Phrymoideae to a redefined family Phrymaceae. (3) Mimulus is not monophyletic, because members of at least six other genera have been derived from within it. In light of the molecular evidence, it is clear that species of Phrymaceae (about 190 species) have undergone two geographically distinct radiations; one in western North America (about 130 species) and another in Australia (about 30 species). Phylogenetic interpretations of morphological evolution and biogeographical patterns are discussed.  相似文献   

19.
This study examines molecular and morphological differentiation in Phryma L., which has only one species with a well-known classic intercontinental disjunct distribution between eastern Asia (EA) and eastern North America (ENA). Phylogenetic analysis of nuclear ribosomal ITS and chloroplast rps16 and trnL-F sequences revealed two highly distinct clades corresponding to EA and ENA. The divergence time between the intercontinental populations was estimated to be 3.68 ± 2.25 to 5.23 ± 1.37 million years ago (mya) based on combined chloroplast data using Bayesian and penalized likelihood methods. Phylogeographic and dispersal-vicariance (DIVA) analysis suggest a North American origin of Phryma and its migration into EA via the Bering land bridge. Multivariate analysis based on 23 quantitative morphological characters detected no geographic groups at the intercontinental level. The intercontinental populations of Phryma thus show distinct molecular divergence with little morphological differentiation. The discordance of the molecular and morphological patterns may be explained by morphological stasis due to ecological similarity in both continents. The divergence of Phryma from its close relatives in the Phrymaceae was estimated to be at least 32.32 ± 4.46 to 49.35 ± 3.18 mya.  相似文献   

20.
透骨草属(Phryma)是一个单种属,间断分布于东亚与北美东部.尽管东亚与北美东部居群形态差异非常小,但分子变异却非常明显.本研究进一步运用AFLP两对引物来衡量透骨草属的遗传多样性并评估其形态保守性.结果发现透骨草的遗传差异主要存在于两大洲的居群之间.聚类与PCA分析显示透骨草分成两大支与其地理分布相吻合,一支全部来自东亚,另一支则是北美东部的居群.我们的结果强烈支持透骨草东亚--北美东部居群存在明显的遗传分化和形态保守.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号