首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Strains of Mycobacterium bovis, M. bovis BCG, and M. tuberculosis, including a so-called Canetti strain, were analyzed by means of two-dimensional immunoelectrophoresis (2D-IE), 2D-IE combined with enzyme staining, and multilocus enzyme electrophoresis (MEE). The results demonstrated a close antigentic and enzymatic resemblance among all the strains tested, even though the BCG strains could be divided into two groups based on the presence of one precipitinogen. Eight of the precipitinogens were shown to correspond to enzymes in M. bovis BCG and 10 in M. tuberculosis. Thus, catalase, isocitrate dehydrogenase, malate dehydrogenase, peroxidase, and several others were identified. By means of MEE the strains of M. tuberculosis, M. bovis, and M. bovis BCG could be differentiated. The analyses further indicated that the M. tuberculosis strain Canetti was more closely related to M. bovis than to M. tuberculosis.  相似文献   

3.
Adenosine 3',5'-cyclic monophosphate (cAMP)-mediated signal transduction is common in both prokaryotes and eukaryotes, and several bacterial pathogens modulate cAMP signaling pathways of their mammalian hosts during infection. In this study, cAMP levels associated with Mycobacterium tuberculosis and Mycobacterium bovis BCG were measured during macrophage infection. cAMP levels within both bacteria increased c . 50-fold during infection of J774.16 macrophages, relative to the cAMP levels within bacteria incubated in tissue culture media alone. cAMP levels also increased within the macrophage cytoplasm upon uptake of live, but not dead, mycobacteria. The presence of albumin in the absence of oleic acid significantly decreased cAMP secretion and production by both M. tuberculosis and M. bovis BCG. These results suggest that cAMP signaling plays a role in the interaction of tuberculosis-complex mycobacteria with macrophages during infection, and that albumin may be a physiological indicator differentiating host environments during infection.  相似文献   

4.
5.
Survival of Mycobacterium bovis after ingestion by protozoa would provide an environmental reservoir for infection of cattle. We have shown that M. bovis survived ingestion by Acanthamoeba castellanii. In contrast, two strains of M. bovis BCG did not survive well within Acanthamoeba.  相似文献   

6.
Survival of Mycobacterium bovis after ingestion by protozoa would provide an environmental reservoir for infection of cattle. We have shown that M. bovis survived ingestion by Acanthamoeba castellanii. In contrast, two strains of M. bovis BCG did not survive well within Acanthamoeba.  相似文献   

7.
8.
DNA preparations from two reference (H37Ra and H37Rv) and two wild strains of Mycobacterium tuberculosis and one re-isolated strain of Mycobacterium bovis BCG were analysed using 17 restriction endonucleases. The enzyme BstEII revealed the greatest differences between strains. Electrophoretic DNA patterns from the wild M. tuberculosis strains differed from each other and from the reference strains at relatively few positions. At the highest resolution attained, patterns from the two reference strains remained indistinguishable from each other. The pattern of the M. bovis BCG strain was substantially different from, but had many bands in common with, the M. tuberculosis patterns.  相似文献   

9.
The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by two-dimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.  相似文献   

10.
Cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE2) biosynthesis by macrophages downregulates microbicidal activities in innate and acquired immune responses against intracellular bacteria. Previous studies in mice showed that intraperitoneal administration of heat-killed Mycobacterium bovis bacillus Calmette-Guérin (HK-BCG) resulted in induction of splenic PGE2-releasing macrophages in 7–14 days. In contrast, HK-BCG induced catalytically inactive COX-2 at relatively high levels in the macrophages within 1 day. In the present study, we found that COX-2 was localized subcellularly in the nuclear envelope (NE) 7 and 14 days after HK-BCG treatment, whereas COX-2 was dissociated from the NE 1 day after treatment. At 1 day after treatment, the majority of COX-2-positive macrophages had phagocytosed HK-BCG. In contrast, no intracellular HK-BCG was detected 7 and 14 days after treatment in COX-2-positive macrophages, where COX-2 was associated with the NE. However, when macrophages phagocytosed HK-BCG in vitro, all COX-2 was associated with the NE. Thus the administration of HK-BCG induces the biphasic COX-2 expression of an NE-dissociated catalytically inactive or an NE-associated catalytically active form in splenic macrophages. The catalytically inactive COX-2-positive macrophages develop microbicidal activities effectively, since they lack PGE2 biosynthesis. nuclear envelope; autoimmune disease; prostaglandin E2  相似文献   

11.
12.
Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.  相似文献   

13.
Cytolytic T-cell responses from 63 normal blood donors were monitored in a Mycobacterium bovis BCG infection system in vitro. We wanted to know whether cultured dendritic cells were capable of potentiating the cytolytic T-cell responses to M. bovis BCG. Infected cultured dendritic cells were up to ten times more effective antigen-presenting cells than macrophages in proliferative assays, while cytolytic T-cell induction did not differ significantly between dendritic cells and macrophages. Separated CD4+ and CD8+ T-cell subsets contributed equally to lysis of infected targets. Experiments comparing wild-type M. bovis BCG strain with two new recombinant M. bovis BCG strains secreting listeriolysin revealed statistically significant higher maximal lysis values for recombinant M. bovis BCG. We conclude from our in vitro infection system with mycobacteria that dendritic cells are superior to macrophages in proliferative assays but equal to macrophages in their ability to induce cytolytic T-cell responses. Moreover, our data suggest that recombinant M. bovis BCG vaccine strains secreting listeriolysin improve cytolytic T-cell responses.  相似文献   

14.
15.
Abstract Using field inversion gel electrophoresis (FIGE), different Mycobacterium tuberculosis strains, such as phage prototypes, exhibit different DNA restriction patterns which are easy to compare. Virulent and avirulent variants of M. tuberculosis H37, as well as daughter strains of M. bovis BCG, display characteristic DNA profiles. BCG strains isolated from suppurative adenitis following vaccination of French patients showed patterns identical to the BCG Pasteur strain used for vaccination. These results demonstrate that FIGE of DNA restriction fragments generated by Dra I represents a suitable technique for the analysis of mycobacteria at a genomic level. The Dra I profiles allow the differentiation and precise identification of the BCG Pasteur, Glaxo, Russian and Japanese strains.  相似文献   

16.
Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world’s most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed.  相似文献   

17.
The competition for L-arginine between the inducible nitric oxide synthase and arginase contributes to the outcome of several parasitic and bacterial infections. The acquisition of L-arginine, however, is important not only for the host cells but also for the intracellular pathogen. In this study we observe that strain AS-1, the Mycobacterium bovis BCG strain lacking the Rv0522 gene, which encodes an arginine permease, perturbs l-arginine metabolism in J774.1 murine macrophages. Infection with AS-1, but not with wild-type BCG, induced l-arginine uptake in J774.1 cells. This increase in L-arginine uptake was independent of activation with gamma interferon plus lipopolysaccharide and correlated with increased expression of the MCAT1 and MCAT2 cationic amino acid transport genes. AS-1 infection also enhanced arginase activity in resting J774.1 cells. Survival studies revealed that AS-1 survived better than BCG within resting J774.1 cells. Intracellular growth of AS-1 was further enhanced by inhibiting arginase and ornithine decarboxylase activities in J774.1 cells using L-norvaline and difluoromethylornithine treatment, respectively. These results suggest that the arginine-related activities of J774.1 macrophages are affected by the arginine transport capacity of the infecting BCG strain. The loss of Rv0522 gene-encoded arginine transport may have induced other cationic amino acid transport systems during intracellular growth of AS-1, allowing better survival within resting macrophages.  相似文献   

18.
By applying density gradient electrophoresis (DGE) to human macrophages infected with Mycobacterium bovis BCG, we were able to separate three different bacterial fractions representing arrested phagosomes, phagolysosomes and mycobacterial clumps. After further purification of the phagosomal population, we found that isolated phagosomes containing live BCG were arrested in maturation as they exhibited only low amounts of the lysosomal glycoprotein LAMP-1 and processing of the lysosomal hydrolase cathepsin D was blocked. In addition, low amounts of MHC class I and class II molecules and the absence of HLA-DM suggest sequestration of mycobacterial phagosomes from antigen-processing pathways. We further investigated the involvement of the actin-binding protein coronin in intracellular survival of mycobacteria and showed that human coronin, as well as F-actin, were associated with early stages of mycobacterial phagocytosis but not with phagosome maintenance. Therefore, we conclude that the unique DGE migration pattern of arrested phagosomes is not as a result of retention of coronin, but that there are other proteins or lipids responsible for the block in maturation in human macrophages.  相似文献   

19.
Vaccination with M. bovis (BCG) essentially prolonged survival time (ST) of several strain mice, with the exception, of CBA/N, infected with M. tuberculosis H37Rv. ST of CBA/N, differing from CBA by xid mutation, was not prolonged by vaccination. Mouse strains with alternative alleles of BCG gene (s and r) and fzy gene as a genetic marker for Bcg5 were used for segregation analysis. It was shown that ST, the level of DTH reaction of mice infected with M. tuberculosis H37Rv, and protective effect of BCG vaccination did not depend on Bcg gene. However, Bcg gene, apparently, regulate the DTH response to PPD in mice only vaccinated with M. bovis (BCG).  相似文献   

20.
Isonicotinic acid hydrazide (Isoniazid, INH) is one of the major drugs worldwide used in the chemotherapy of tuberculosis. Many investigators have emphasized that INH activation is associated with mycobacterial catalase-peroxidase (katG). However, INH activation mechanism is not completely understood. In this study, katG of M. bovis BCG was separated and purified into two katGs, katG I (named as relatively higher molecular weight than katG II) and katG II, indicating that there is some difference in protein structure between two katGs. The molecular weight of the enzymes of katG I and katG II was estimated to be approximately 150,000 Da by gel filtration, and its subunit was 75,000 Da as determined by SDS-PAGE, indicating that purified enzyme was composed of two identical subunits. The specific activity of the purified enzyme katG I was 991.1 (units/mg). The enzymes were then investigated in INH activation by using gas chromatography mass spectrometry (GC-MS). The analysis of GC-MS showed that the katG I from M. bovis BCG directly converted INH (Mr, 137) to isonicotinamide (Mr, 122), not to isonicotinic acid (Mr, 123), in the presence or absence of H2O2. Therefore, this is the first report that katG I, one of two katGs with almost same molecular weight existed in M. bovis BCG, converts INH to isonicotinamide and this study may give us important new light on the activation mechanism of INH by KatG between M. bovis BCG and M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号