首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemolin is hemolymph protein that is a member of the immunoglobulin superfamily. Its induced expression after bacterial infection suggests that it functions in the immune response. In this paper, we describe the expression of the Manduca sexta hemolin gene at certain developmental stages in the absence of microbial challenge. Hemolin was present at a very low level in hemolymph of naive larvae until the beginning of the wandering stage prior to pupation, when its concentration in hemolymph increased dramatically. At the same time, hemolin could be found in the fluid contained in the midgut lumen. The appearance of hemolin mRNA in fat body and midgut at the beginning of the wandering stage correlated with the presence of hemolin in the hemolymph and midgut lumen. Hemolin was present in hemolymph through the pupal and adult stages. Hemolin was also present in newly deposited eggs, and persisted in eggs throughout embryonic development. A hemolin cDNA isolated from an adult fat body library had the same sequence as those previously obtained from larval libraries. Hemolin purified from hemolymph of bacteria-injected larvae, from hemolymph of naive wandering stage larvae and adult moths, and from midgut fluid of wandering stage larvae had the same apparent mass, which was consistent with the mass predicted from the hemolin cDNA sequence. Hemolin from hemolymph of wandering stage larvae did not contain any detectable carbohydrate, but hemolin from the hemolymph of bacteria-injected larvae and from naive adult moths was associated with carbohydrate, although of different amounts and composition. These results suggest that a single hemolin gene is developmentally regulated and is also induced when insects are exposed to microbial infection. M. sexta hemolin apparently lacks post-translational covalent glycosylation, but instead is associated under some conditions with non-covalently bound carbohydrates. Arch.  相似文献   

2.
The lipid droplets (LDs) are intracellular organelles mainly dedicated to the storage and provision of fatty acids. To accomplish these functions the LDs interact with other organelles and cytosolic proteins. In order to explore possible correlations between the physiological states of cells and the protein composition of LDs we have determined and compared the proteomic profiles of lipid droplets isolated from the fat bodies of 5th-instar larvae and adult Manduca sexta insects and from ovaries. These LD-rich tissues represent three clearly distinct metabolic states in regard to lipid metabolism: 1) Larval fat body synthesizes fatty acids (FA) and accumulates large amounts as triglyceride (TG); 2) Fat body from adult insects provides FA to support reproduction and flight; 3) Ovaries do not synthesize FA, but accumulate considerable amounts of TG in LDs. Major qualitative and semi-quantitative variations in the protein compositions of the LDs isolated from these three tissues were observed by MS/MS and partially validated by immuno-blotting. The differences observed included changes in the abundance of lipid droplet specific proteins, cytosolic proteins, mitochondrial proteins and also proteins associated with the machinery of protein synthesis. These results suggest that changes in the interaction of LDs with other organelles and cytosolic proteins are tightly related to the physiological state of cells. Herein, we summarize and compare the protein compositions of three subtypes of LDs and also describe for the first time the proteomic profile of LDs from an insect ovary. The compositions and compositional differences found among the LDs are discussed to provide a platform for future studies on the role of LDs, and their associated proteins, in cellular metabolism.  相似文献   

3.
The evolution of changes in body size is one of the most important patterns in the history of life. Its importance arises from both the frequency of the pattern and the biological implications of size change itself, which affects myriad aspects of an organism's structure and function through well-known scaling relationships. Yet relatively little attention has been focused on the underlying genetic and developmental controls of size change or their implications with regard to other morphological changes. Here, I review the endocrine growth axis and show that variation in several key growth-control substances, particularly growth hormone (GH) and insulin-like growth factor I (IGF I), is clearly linked to intraspecific differences in postnatal growth rates and terminal body size. I intentionally review a considerable amount of literature on nonprimate mammals because this research is vital to an understanding of the general topic. Research on human pygmies, giant transgenic mice, and other models of growth disturbances indicates that shifts in GH and/or IGF I levels not only yield the expected changes in terminal body size, but also result in simple truncations or extensions of underlying allometric patterns. These data provide a possible developmental basis for the common finding of ontogenetic scaling and coordinated transformations in series of closely related fossil or living species that differ in body size. At present, however, this must be viewed as a hypothesis that requires testing through interspecific analyses. A consideration of previous interpretations of the morphological distinctions of human pygmies and some other organisms demonstrates the novel information that a developmental perspective brings to morphological comparisons. Clearly, knowledge of the genetic and developmental controls of morphogenesis will greatly enhance our understanding of a multitude of evolutionary patterns, processes and mechanisms, for it is perturbations in these these controls that ultimately produce the raw material for evolutionary transformations.  相似文献   

4.
The technique of steroid hormone autoradiography has been used to study the cellular distribution of ecdysteroid binding sites in the ventral nervous system of the tobacco hornworm moth, Manduca sexta. The ligand was 26-[125I]iodoponasterone. Tissue was examined from the subesophageal ganglia, thoracic ganglia, and abdominal ganglia of larvae at two times during the larval-pupal transient: the 2nd day of wandering and the prepupal stage. The patterns of neuronal binding seen were compared with those found in earlier autoradiographic studies of hormone binding in tissue sampled on the 1st day of wandering, in the pharate adult, and in the 4-day-old moth (Fahrbach and Truman, '89). The pattern of binding was reproducible but dependent upon developmental stage: whereas only a subset of neurons exhibited nuclear accumulation of radiolabeled ecdysteroids on the 1st day of wandering, less than 24 hours later nearly every neuron in the ventral nervous system was labeled. A limited pattern of binding, however, was seen again in the prepupal nervous system. Thus, the insect nervous system is able to use a single hormone both as a general cue for metamorphic development and as a single targeted to stage-specific subsets of neurons by alternating periods of ubiquitous expression of receptor with periods during which the capacity to bind the steroid hormone is highly restricted.  相似文献   

5.
The heterotrimeric G proteins are a conserved family of guanyl nucleotide-binding proteins that appear in all eukaryotic cells but whose developmental functions are largely unknown. We have examined the developmental expression of representative G proteins in the developing nervous system of the moth Manduca sexta. Using affinity-purified antisera against different Gα subunits, we found that each of the G proteins exhibited distinctive patterns of expression within the developing central nervous system (CNS), and that these patterns underwent progressive phases of spatial and temporal regulation that corresponded to specific aspects of neuronal differentiation. Several of the G proteins examined (including Gsα and Goα) were expressed in an apparently ubiquitous manner in all neurons, but other proteins (including Giα) were ultimately confined to a more restricted subset of cells in the mature CNS. Although most of the G proteins examined could be detected within the central ganglia, only Goα-related proteins were seen in the developing peripheral nerves; manipulations of G protein activity in cultured embryos suggested that this class of G protein may contribute to the regulation of neuronal motility during axonal outgrowth. Goα-related protein were also localized to the developing axons and terminals of the developing adult limb during metamorphosis. These intracellular signaling molecules may, therefore, play similar developmental roles in both the embryonic and postembryonic nervous system. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Summary At the culmination of each molt, the larval tobacco hornworm exhibits a pre-ecdysis behavior prior to shedding its old cuticle at ecdysis. Both pre-ecdysis and ecdysis behaviors are triggered by the peptide, eclosion hormone (EH). Pre-ecdysis behavior consists of rhythmic abdominal compressions that loosen the old larval cuticle. This behavior is robust at larval molts, but at the larval-pupal molt the only comparable behavior consists of rhythmic dorso-ventral flexions of the anterior body. These flexions appear to be an attenuated version of the larval pre-ecdysis behavior because (1) they show the same EH dependence, and (2) the motor patterns recorded from EH treated, deafferented larval and pupal preparations are similar except that the pupal pattern is much weaker. Both patterns are characterized by rhythmic, synaptically-driven bursts of action potentials in motoneurons MN-2 and MN-3, which occur synchronously in all segments. However, the synaptic drive to the motoneurons and their resultant levels of activity are reduced during the pupal pre-ecdysis motor pattern, especially in posterior abdominal segments. Although the dendritic arbors of both motoneurons regress somewhat during the larval-pupal transformation, this does not appear to be the primary source of diminished synaptic drive because regression is greatest in the segments in which synaptic inputs remain the strongest. The developmental weakening of the pre-ecdysis motor pattern thus may be due to changes at the interneuronal level.Abbreviations A2, A3... abdominal segments 2, 3, etc. - ALE anterior lateral external muscle - day L3 third day of the 5th larval instar - day P0 the day of pupal ecdysis - DN a anterior branch of the dorsal nerve - EH eclosion hormone - HPLC high performance liquid chromatography - TP tergopleural muscle  相似文献   

7.
We have discovered a new type of haemocyte in the larval stage of the tobacco hornworm moth Manduca sexta that has extreme phagocytic ability; each cell can engulf up to 500 bacteria. This level of phagocytosis may be unprecedented among animal cells. Although these hyperphagocytic cells (HP) only represent about 1% of the circulating haemocytes, they are responsible for sequestering the majority of the bacteria by circulating haemocytes when non-pathogenic, heat-killed Escherichia coli are injected into the haemolymph. Extreme phagocytosis by HP is not limited to Gram-negative bacteria since heat-killed Staphylococcus aureus as well as positively and negatively charged microspheres are also highly phagocytosed. Evidence is presented to show that phagocytosis by HP is involved in the early stages of nodule formation in infected insects. In addition, HP are also present in non-infected insects, characterised by their distinctive spreading morphology, which becomes impaired following hyperphagocytosis of bacteria. This is the first time that a dedicated "professional" phagocytic class of haemocyte has been reported for an invertebrate. The importance of these specialised cell types in the M. sexta immune response and their role in nodule formation is discussed.  相似文献   

8.
After newly hatched Manduca sexta larvae were parasitized by Apanteles congregatus, the wasps emerged from third, fourth, fifth, or supernumerary sixth stage host larvae. The number of parasites present within a host determined the time required for Apanteles development and the final host instar. In addition, the percent of parasites within a host which successfully completed their development and emerged was determined by the parasite load. Parasitized larvae gained weight more slowly and attained lower final weights than did unparasitized control larvae; this was attributed to reduced food consumption by the parasitized larvae. Following parasitization of freshly ecdysed fifth-instar Manduca larvae, the rate of Apanteles development was accelerated with respect to that observed when young larvae served as hosts. Parasitism also induced developmental changes in Manduca larvae which encapsulated Apanteles and from which no parasites emerged. Our findings suggest that such larvae retain high juvenile titers late in larval life, preventing normal metamorphosis.
Zusammenfassung Nachdem frischgeschlüpfte Manduca sexta Raupen durch Apanteles congregatus parasitiert worden waren, schlüpften Wespen aus dem dritten, vierten, fünften oder aus einem überzähligen sechsten Raupenstadium des Wirts. Die Zahl der Parasiten in einem Wirt bestimmte die für die Entwicklung von Apanteles erforderliche Zeit und das Endraupenstadium des Wirts. Zudem wurde der Prozentsatz der Parasiten, die in einem Wirt erfolgreich ihre Entwicklung abschlossen und schlüpften, durch die Parasitenzahl bestimmt. Parasitierte Raupen nahmen langsamer an Gewicht zu und erreichten ein geringeres Endgewicht als nichtparasitierte Vergleichsraupen; dies wurde auf geringere Futteraufnahme der parasitierten Raupen zurückgeführt. Nach der Parasitierung von Manduca Raupen direkt nach der fünften Hautung war die Entwicklungsgeschwindigkeit von Apanteles beschleunigt im Vergleich zu derjenigen in parasitierten Jungraupen. Die Parasitierung verursachte auch Entwicklungsänderungen in Manduca-Raupen, die Apanteles einkapselten und aus denen keine Parasiten schlüpften. Unsere Beobachtungen deuten an, dass solche Raupen einen hohen Juveniltiter bis spät in der Raupenentwicklung behalten, was eine normale Metamorphose verhindert.


Presented in part at the American Society of Zoologists Meeting, New Orleans, in June 1976.  相似文献   

9.
《Insect Biochemistry》1985,15(4):489-502
When fat body mRNA from the tobacco hornworm larva, Manduca sexta, was translated in a rabbit reticulocyte lysate system, three major polypeptides were found, each having a different developmental profile. One mRNA coded for a 74 kilodalton (K) polypeptide doublet precipitated by an antibody to the arylphorin (manducin). This mRNA was present only during the intermolt feeding phase of the penultimate and the final larval instars. Its appearance 16–24 hr after larval ecdysis was dependent upon the incoming nutrient supply and independent of the juvenile hormone (JH) level. Immunoblots of proteins of the fat body, epidermis, and cuticle revealed the presence of arylphorin in all three tissues. Additionally, several small polypeptides that cross-reacted with the arylphorin antibody were found in the fat body during and up to 24 hr after the last larval molt and in the tanning pupal cuticle. The larval epidermis was also found to contain a small amount of arylphorin mRNA. At the time of the JH decline prior to the onset of metamorphosis, a female-specific mRNA coding for a 79 K translation product appeared. In allatectomized larvae this mRNA was detectable earlier, and its appearance in intact larvae was prevented by application of methoprene, indicating that JH regulates its appearance. At wandering a new mRNA that also codes for a 79 K polypeptide appeared in both sexes and was the major messenger present during the prepupal stage. Neither it nor the female-specific mRNA were translatable after pupal ecdysis.  相似文献   

10.
《Insect Biochemistry》1990,20(5):501-509
The pericardial cell-heart complex (pericardial complex) of fifth instar Manduca sexta larvae has been shown to contain, to synthesize and to release lysozyme. Lysozyme activity was present in homogenates of pericardial complex. Immunocytochemical analysis demonstrated that lysozyme in the pericardial complex was located in pericardial cells. Injection of peptidoglycan elicitors, which markedly increase levels of hemolymph lysozyme, also elevated lysozyme activity in homogenates of pericardial complex, but only moderately. Lysozyme synthesis in the pericardial complex was demonstrated in vitro by the incorporation of [3H]leucine into immunoprecipitable lysozyme. This tissue did exhibit an increase in the release of a variety of newly synthesized proteins but not a selective increase in the synthesis and release of lysozyme after peptidoglycan stimulation.In similar experiments, cultured fat body from naive larvae incorporated [3H]leucine into secreted, immunoprecipitable lysozyme at a rate 100-fold greater than that observed for pericardial complex and exhibited a selective increase in lysozyme synthesis and release to 6.5 times its basal level when stimulated with peptidoglycan.We conclude that, of these two tissues, fat body is the primary source of hemolymph lysozyme. On the other hand, pericardial cell lysozyme may function in the intracellular, lysosomal degradation of pinocytosed fragments of bacterial invaders.  相似文献   

11.
Developmental changes in the expression of a FMRFamide-like (Phe-Met-Arg-Phe-NH2) peptide or peptides in motoneurons of the tobacco hornworm, Manduca sexta, were demonstrated using immunohistochemical techniques. The onset of FMRFamide-like immunoreactivity (FLI) was gradual during larval growth but by the final larval stage, immunoreactivity was present in the majority of motoneurons. FLI then declined during metamorphosis and was absent in all identified adult motoneurons. We used a novel in vivo culture system to demonstrate that the steroid hormone, 20-hydroxyecdysone, regulates the loss of FLI in motoneurons during metamorphosis. The small commitment peak of ecdysteroid appears to shut off the program of neuropeptide accumulation that is characteristic of the larval state of the motoneurons. The prepupal peak of steroid then causes the rapid loss of stored FLI. This steroid-induced change in the neuropeptide content of motoneurons may reflect major changes in neuromuscular functions between the larval and adult stages. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Glycosphingolipids (GSLs) have been implicated as playing major roles in cellular interactions and control of cell proliferation in muticellular organisms. Moreover GSLs and other sphingolipids such as sphingomyelins, ceramides and sphingosines serve a variety of roles in signal transduction. Hence, identification of structures of GSLs in different biota will shed light in understanding their physiological role. During this study, the major glycosphingolipid component present in the extracts of stage-12 and stage-17/18 metamorphosing adults of Manduca sexta was identified as mactosyl ceramide. We report the isolation of several ceramide disaccharides, a ceramide trisaccharide and a ceramide tetrasaccharide. The GSL structures were confirmed by high-resolution mass spectrometry and tandem mass spectrometry. The identity of the monosaccharides was proved using exoglycosidases. The predominant sphingosine chain-length varied from C-14 (tetradecasphing-4-enine) to C-16 (hexadecasphing-4-enine) in these GSLs. Sphingosines of both chain lengths were accompanied by their doubly unsaturated counterparts tetradecasphinga-4,6-diene and hexadecasphinga-4,6-diene. It is also interesting to note the presence of tetradecasphinganine and hexadecasphinganine in minute amounts in the form of a GSL in the extracts of M. sexta. The varying degrees of unsaturation in the sphingosine moiety of GSLs in M. sexta may be biologically significant in insect metamorphosis. The ceramide trisaccharides and ceramide tetrasaccharide belong to the arthro-series, The observation of fucose in the M. sexta GSLs is the first report of the presence of fucose in an arthroseries GSL.  相似文献   

13.
Three cDNA clones coding for the 12.8, 13.3, and 14.6 kDa larval cuticular proteins of the tobacco hornworm, Manduca sexta, were isolated and characterized. Hybridization to abdominal epidermal RNA from different stages showed that the genes for the 12.8 and 13.3 kDa proteins were expressed only during larval life. By contrast, the gene for the 14.6 kDa protein was expressed throughout the segment during the feeding, growing larval stages, then only in the flexible intersegmental regions during the deposition of endocuticle in the pharate pupa and adult. Quantitative RNA dot blot hybridizations showed that the RNA for each protein disappeared during the larval molt when the ecdysteroid titer was high, then reappeared during the preecdysial deposition of endocuticle. All disappeared when the epidermis became pupally committed at the onset of wandering. Exposure of the fourth instar epidermis to 20-hydroxyecdysone (20HE) in vitro under conditions that lead to the formation of a new larval cuticle by 48 hr caused the disappearance of these RNAs by 18 hr. Exposure of Day 2 fifth instar epidermis to 20HE in vitro caused a depression of these RNAs which in the case of the RNAs coding for the 12.8 and 13.3 kDa proteins was partially prevented by simultaneous exposure to methoprene, a juvenile hormone (JH) mimic. By contrast, the RNA for the 14.6 kDa protein was suppressed by exposure to methoprene alone. Thus, each of these larval cuticular genes is turned off by high ecdysteroid; the presence or absence of JH determines whether or not this suppression is permanent in some or all cells.  相似文献   

14.
Pattern recognition proteins in Manduca sexta plasma   总被引:10,自引:0,他引:10  
Recognition of nonself is the first step in mounting immune responses. In the innate immune systems of both vertebrates and arthropods, such recognition, termed pattern recognition, is mediated by a group of proteins, known as pattern recognition proteins or receptors. Different pattern recognition proteins recognize and bind to molecules (molecular patterns) present on the surface of microorganisms but absent from animals. These molecular patterns include microbial cell wall components such as bacterial lipopolysaccharide, lipoteichoic acid and peptidoglycan, and fungal beta-1,3-glucans. Binding of pattern recognition proteins to these molecular patterns triggers responses such as phagocytosis, nodule formation, encapsulation, activation of proteinase cascades, and synthesis of antimicrobial peptides. In this article, we describe four classes of pattern recognition proteins, hemolin, peptidoglycan recognition protein, beta-1,3-glucan recognition proteins, and immulectins (C-type lectins) involved in immune responses of the tobacco hornworm, Manduca sexta.  相似文献   

15.
The activities of ecdysone oxidase (EO), 3-oxoecdysteroid 3α-reductase (3α-R), and 3-oxoecdysteroid 3β-reductase (3β-R) were determined for epidermis, hemolymph, and fat body of wandering fifth instar Manduca sexta larvae and for midguts of various developmental stages between 3 days after the last larval and 14 days after the pupal ecdysis. The larval midgut was the only organ showing substantial specific activities of EO and 3α-R, and both increased up to the seventh day after ecdysis. Hemolymph and fat body had only moderate to high 3β-R and low EO activites, and the epidermis did not contain significant activity of any of the enzymes. On the ninth day after the last larval ecdysis the larval midgut epithelium was replaced by a new pupal midgut epithelium. After this event only 3β-R was restored to high activities, whereas EO and 3α-R showed only low to marginal activities. It is concluded that only the larval midgut has a role in the inactivation of ecdysteroids by 3-epimerization. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    16.
    Exclusion column fractionated immune hemolymph of the M. sexta larva contains five peaks of anti-E. coli activity with molecular weights of greater than 140 kD and approximately 91, 54, 14 and 4 kD, plus one peak of lysozyme activity with a molecular weight of 17 kD. Purification of the 54 kD peak showed that this peak consists of the previously described M18 proteins which have monomeric weights of approximately 20 kD and had antibacterial activity against certain gram negative bacteria. Approximately 80% of the total hemolymph antibacterial activity was detected in the 14 and 4 kD peaks. These proteins, which kill both gram negative and gram positive bacteria, appeared to be directly analogous to the cecropins of H. cecropia. The greater than 140 and 91 kD peaks constituted only a minor part of the total antibacterial activity.  相似文献   

    17.
    The endoparasitic wasp Cotesia congregata develops in the hemocoel of larval stages of the tobacco hornworm, Manduca sexta. Teratocytes were released from the serosal membrane during hatching of the first instar wasp larva at 2-3days after oviposition; about 160 cells were released per embryo. The cells increased in diameter from about 10 to >200&mgr;m prior to wasp emergence. Nascent microvilli, visible on the cell surface before hatching of the first instar larva, rapidly increased in length and number following release of the cells. Irrespective of when the wasps were due to emerge, or how many parasitoids were present in the host, dramatic cytological changes occurred in the cells during the last instar of the host's development. Many of these morphological and ultrastructural changes were symptomatic of the cytological features of degenerating or apoptotic cells, and large numbers of vesicles appeared interspersed amongst the microvilli. The nucleus developed extensive dentritic ramifications, and the chromatin condensed in large clumps on the inner nuclear membrane. At the final stages of the wasps' development, the nucleus occupied the bulk of the interior of the cell. The cytoplasm gradually grew dramatically more electronluscent and less granular, as did the nucleoplasm, which is also indicative of impending cell death. Following the parasites' emergence, many of the cells underwent extensive blebbing of the cell surface. Teratocytes within a host appeared heterogeneous with respect to their morphological appearance. Analysis of the proteins secreted by teratocytes in vitro following labelling with (35)S-methionine showed that many (>30) polypeptides were synthesized de novo and secreted by the cells; some proteins were clearly targeted for secretion. We presume that the cells likely secrete a large number of proteins in vivo as well as in vitro.  相似文献   

    18.
    The 80,000g supernatant o larval midgut homogenates of the tobacco hornworm, Manduca sexta, was fractionated by affinity chromatography on Blue Sepharose CL-6B and by anion exchange chromatography on Q Sepharose. Both methods resolved one major 3-oxoecdysteroid 3α-reductase and three major 3-oxoecdysteroid 3β-reductases. The 3β-reducates reacted only with BADPH as cosubstrate. The 3α-reductase was active with both NADPH and NADH, and the NADPH/NADH activity ratio increased with the NaCl concentration (0–0.5 M) in the incubation mixtures. The 3-α-reductase and one of the 3-β-reductases showed very similar chromatographic properties, and their isoelectric points were 5.2 and 5.8, respectively. © 1992 Wiley-Liss, Inc.  相似文献   

    19.
    Three types of pheromone receptor cells have been identified by electrophysiological recording from single antennal sensilla trichodea of the male sphinx moth Manduca sexta. These cells responded best to the pheromone components (E,Z)-10,12-hexadecadienal (type A receptor cell), (E,E,Z)-10,12,14-hexadecatrienal (type B), and (E,E,E)-10,12,14-hexadecatrienal (type C). Cell type B also responded to (E,Z)-11,13-pentadecadienal, which has been used experimentally as a pheromone substitute. In recordings from 20 trichoid hairs, 17 were found to be innervated by one cell of type A and one of type B; 3 trichoid hairs had cell types A and C.  相似文献   

    20.
    Structure-activity studies were performed for adipokinetic hormone (AKH) in Manduca sexta. Seven naturally occurring and four synthetic peptides of the red pigment concentrating hormone (RPCH)/AKH family were tested in larvae of M. sexta for activation of glycogen phosphorylase in fat body. pGlu at the N-terminal was found to be important for activity of peptides; however, Manduca AcGly1AKH is partially active. The amino acids at all positions appear to be of importance for activity, with the possible exception of the two serine residues in positions six and seven. Generally, the more amino acids are exchanged, the less the peptide will bind to the receptor. In M. sexta a beta-bend appears not to be important for the binding of peptides. Peptides ten amino acids long appear to be more active than shorter ones.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号