首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Volatile organic compounds (VOCs) emitted by flowers play an essential role in mediating the attraction of pollinators. However, they also attract other species exploiting resources associated with flowers. For instance, VOCs emitted by figs play a major role in encounters between Ficus spp., their mutualistic pollinating wasps, and all the members of the community of non-pollinating fig wasps (NPFWs) that exploit the mutualistic interaction. Because pollinators might be in limited supply for a tree bearing many inflorescences, the plant might maximize its individual reproductive success by reducing the attractiveness of inflorescences once they are pollinated, so that pollinators orient only towards the tree's unpollinated figs. Changes in VOCs emission that bring this about could represent an important cue for NPFWs that exploit particular stages of fig development. In this study, by monitoring precisely the presence of fig-associated wasps on figs of F. racemosa, a common widespread fig species, we demonstrated that 4–5 days and 15 days following pollination represent two critical transitional steps in the succession of different wasp species. Then, focusing on the first one of these transitional steps, by investigating the composition of fig VOCs at receptivity and from 1 to 5 days following pollination, we detected progressive quantitative and qualitative variation of floral scent following pollination. These changes are significant at 5 days following pollination. The qualitative changes are mainly due to an increase in the relative proportions of two monoterpenes (α-pinene and limonene). These variations of the floral VOCs following pollination could explain why pollinating wasps stop visiting figs very shortly after the first pollinators enter receptive figs. They also possibly explain the succession of non-pollinating wasps on the figs following pollination.  相似文献   

2.
Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds which is necessary for avoiding possible damage to non-target plants. Volatile organic compounds (VOCs) emitted by plants likely play an important role in determining which plants attract and are accepted by a prospective arthropod agent. However, current methods to evaluate host plant specificity usually rely on empirical choice and no-choice behavioural experiments, with little knowledge about what chemical or physical attributes are stimulating the insect. We conducted experiments to measure the quantitative and qualitative effects on emission of VOCs caused by simple mechanical damage to leaves of plants known to differ in suitability and attractiveness to a prospective agent. More VOCs were detected from damaged than from undamaged leaves for all three species tested. Discriminant analysis was able to correctly distinguish the taxonomic identity of all plants based on their VOC profiles; however, the VOCs that discriminated species among undamaged leaves were completely different from those that discriminated among damaged leaves. Thus, damaged and undamaged plants present different VOC profiles to insects, which should be considered when conducting host plant specificity experiments. An unacceptable non-target plant, Centaurea cineraria, emitted all except one of the VOCs that were emitted by its preferred host plant, Centaurea solstitialis, indicating the importance of compounds that are repellant in host plant specificity. Centaurea cyanus emitted fewer VOCs than C. solstitialis, which suggests that it lacked some VOCs important for host plant recognition.  相似文献   

3.
Information on intra-specific variation in pollinator-attracting floral traits provides clues to selective pressures imposed by pollinators. However, these traits also reflect constraints related to floral phenology or morphology. The specific weevil pollinator Derelomus chamaeropsis of the dioecious Mediterranean dwarf palm Chamaerops humilis is attracted by volatile compounds that leaves, and not flowers, release during anthesis. Production of these olfactory cues is thus probably not constrained by any other floral function. This provides the opportunity to study variation of a floral trait that is not produced by a floral organ. We studied volatile compounds emitted by leaves of 12 individual C. humilis over the whole flowering season. The quantity of volatile compounds emitted by leaves reached a maximum when plants required pollinator visits. The relationship between odour emission and floral phenology was slightly different between male and female plants, probably reflecting differences in the exact time at which females and males benefit from pollinator visitation. Male plants produced higher quantities of volatile compounds than females. Odour composition was highly variable among individuals but did not differ between male and female plants. In this system, female C. humilis are pollinated by deceit and pollinators should be selected to avoid visiting them. The absence of sexual difference in blend composition may thus prevent pollinators from discriminating between male and female plants.An erratum to this article can be found at  相似文献   

4.
5.
Volatile organic compounds (VOCs) are common among plants, both as attractants for pollinators and as defence against herbivores. While much studied among flowering plants, the prevalence and function of VOCs among ferns is little known. Using headspace sorption and gas chromatography, we analysed the VOCs of dried specimens of six species of grammitid fern (Polypodiaceae), including two species of the genus Melpomene, which is characterised by a distinctive sweet smell. We identified 38 VOCs, including 22 not previously recorded among ferns. The two species of Melpomene had distinct VOC cocktails, including 12 substances not found in the other four studied genera, mainly involving fatty acid derivatives (FADs) and aromatics. We propose that these VOCs have, at least in part, a function in herbivore defence, but note that the VOC bouquet of Melpomene is distinct from that typically found in angiosperms.  相似文献   

6.
7.
植物释放挥发性有机物(VOCs)的研究进展   总被引:20,自引:0,他引:20  
植物释放的有机物(VOCs)对大气圈臭氧的动态、一氧化碳的产生和甲烷的氧化起重要作用。本文主要综述了异戊二烯、单萜这两种重要的植物释放物,总结了国内外的研究进展,概括了它们的合成、释放以及环境因子的影响。同时简要介绍了其它几种植物释放的有机物,并就有机物的释放对大气化学、温室效应和全球变化的影响也作了简要分析。  相似文献   

8.
Plants synthesize volatile compounds to attract pollinators. The volatiles emitted by flowers are often complex mixtures of organic compounds; pollinators are capable of distinctly recognizing different volatile compounds. Plants also produce volatile compounds to protect themselves against herbivores and pathogens. Some of the volatile compounds produced in floral and vegetative tissues are toxic to insects and microbes. To adapt changes in the environment, plants have evolved the ability to synthesize a unique set of volatiles. Intensive studies have identified and characterized the enzymes responsible for the formation of plant volatiles. In particular, many biosynthetic genes have been isolated and their enzymatic functions have been proposed. This review describes how plants have evolved the biosynthetic pathways leading to the formation of green leaf volatiles and phenylpropene volatiles.  相似文献   

9.
Certain species of Scrophularia (Scrophulariaceae), such as S. nodosa and S. umbrosa, are mainly pollinated by social wasps and are consequently described as wasp-flowers. Because plants attract their pollinators with the help of various floral cues, such as floral odour and/or optical cues, we have investigated the role of olfactory and visual floral signals responsible for wasp attraction in S. umbrosa. Using a combination of chemical (GC, GC-MS) and electrophysiological analyses (GC-EAD), we identified ten compounds in the complex floral odour bouquet that are detectable by the wasps' antennae. As in the wasp-flower Epipactis helleborine, we found so-called 'green leaf volatiles' (GLVs) in the floral odour; these GLVs are highly attractive to the wasps. GLVs, mostly six-carbon aldehydes, alcohols and acetates, and other volatile organic compounds (VOCs), are emitted by many plants infested with herbivores, e.g. caterpillars. In contrast to other investigated wasp-flowers, behavioural experiments have demonstrated that, in addition to the floral odour of S. umbrosa, visual cues are involved in pollinator attraction.  相似文献   

10.
Floral scent, often a complex mixture of several volatile organic compounds (VOCs), has generally been interpreted as an adaptation to attract pollinators. However, not many studies have analysed which VOCs are functionally relevant for the reproductive success of a plant. Here, we show that, in Salix caprea (Salicaceae), temporal changes in floral scent emission during the day and night attract two different types of flower visitor: bees during the day and moths during the evening and night. We analysed the contribution of the two flower visitor groups to the reproductive success of the plant. The differences in scent emitted during the peak activity times of flower visitors (day versus night) were quantified and the response of 13 diurnal/nocturnal pollinator taxa to the floral scents was tested using gas chromatographic and electroantennographic techniques. Many of the c. 40 identified scent compounds were physiologically active, and bees and moths responded to nearly identical sets of compounds, although the response strengths differed. In bioassays, bees preferred the most abundant 1,4‐dimethoxybenzene over lilac aldehyde, a compound with increased emission at night, whereas moths preferred lilac aldehyde over 1,4‐dimethoxybenzene. Pollination by wind plus nocturnal pollinators (mainly moths) or by wind alone contributed less to seed set than pollination by wind plus diurnal pollinators (mainly bees). This suggests that the emission of scent during the night and attracting moths have no significant effect on reproductive success. It is possible that the emission of lilac aldehydes and other compounds at night is s result of phylogenetic constraints. Future studies should investigate whether moths may produce a marginal fitness gain in some years and/or some populations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 624–640.  相似文献   

11.
植物挥发性信号物质介导抗性的生态功能   总被引:2,自引:1,他引:1  
植物产生的挥发性化合物能够作为媒介参与植物与周围环境之间的信息交流及相互作用。植物挥发性物质在吸引传粉者、促进种子传播、抑制其它植物种子萌发等方面具有重要的作用。近年来,关于植物挥发性物质在生态系统中的信号作用研究已经成为国内外的研究热点,受到广泛关注。总结了植物挥发性物质作为信号物质在提高植物抗性方面的国内外研究成果,阐述了植物挥发性物质不仅能够直接提高植物的抗性,而且可以作为信号物质在同株、同种异株和不同种植物之间进行传递,进而间接提高目标植物的抗性。最后,还对植物挥发性物质的研究方法和潜在的生态功能进行了探讨。  相似文献   

12.
环境因子对植物释放挥发性化合物的影响   总被引:9,自引:0,他引:9  
李继泉  金幼菊  沈应柏  洪蓉 《植物学通报》2001,18(6):649-656,677
对近年来有关环境因子与植物释放挥发性化合物关系的研究进展进行了综合和概括。本文主要包括3类挥发性化合物。⑴异戊二烯是由叶绿体产生并且直接释放到大气中的C5化合物。⑵单萜类化合物是一类环状或非环状的C10化合物,它在植物体内合成后首先贮存于体内的特殊结构中(如树脂道、油腺),然后由此通过气孔向大气中释放。⑶含氧挥发性化合物以各种形式释放大大气中。它包括醇、醛、酮、酯和有机酸。本文的重点是前两者,主要阐述了二方面内容:⑴植物军发性化合物的生物合成和释放机理。⑵环境因子(如温度、光照、水分胁迫、营养、CO2浓度、空气湿度)及植物的发育阶段、机械损伤和昆虫取食等对植物挥发性化合物合成与释放的影响机制。  相似文献   

13.
? Premise of the study: Most studies on orchid hybrids examine separately the effects of hybridization on interactions with pollinators or with mycorrhizal fungi. Here, we simultaneously investigated both interactions in the mediterranean food-deceptive Orchis simia, O. anthropophora, and their hybrid (O. ×bergonii) and tested a possible breakdown of coevolution using a multidisciplinary approach. ? Methods: We compared leaf growth, seed viability, emitted scent, and mycorrhizal fungi (species and rate of infection) among these three taxa. ? Key results: We show that leaf surface is greater in adult hybrids than in the parental species, suggesting a heterosis effect for vegetative growth. We demonstrate that flowers of the two parental species emit well-differentiated bouquets of volatile organic compounds, while hybrids emit larger quantities, accumulating most compounds of the two parental species. However, hybrids fail to attract pollinators and have a 10 times lower fruit set. We determined that closely related Tulasnellales are mycorrhizal in the three taxa, suggesting that the mycorrhizal partner does not impair hybrid survival. We propose an interpretative model for O. ×bergonii compared with its parents. ? Conclusions: In hybrids, carbon resources normally devoted to reproduction may be reallocated to the mycorrhizal symbiosis as a result of the disruption of the pollination interaction in hybrids. Higher mycorrhizal infection may in turn enhance vegetative growth and scent emission. Such interplay between the two obligate biotic interactions yields new insights into hybridization among orchids.  相似文献   

14.
对近年来有关环境因子与植物释放挥发性化合物关系的研究进展进行了综合和概括。本文主要包括3类挥发性化合物。(1)异戊二烯是由叶绿体产生并且直接释放到大气中的C5化合物。(2)单萜类化合物是一类环状或非环状的C10化合物,它在植物体内合成后首先贮存于体内的特殊结构中(如树脂道、油腺),然后由此通过气孔向大气中释放。(3)含氧挥发性化合物以各种形式释放到大气中。它包括醇、醛、酮、酯和有机酸。本文的重点是前两者, 主要阐述了二方面内容:(1)植物挥发性化合物的生物合成和释放机理。(2)环境因子(如温度、光照、水分胁迫、营养、CO2浓度、空气湿度)及植物的发育阶段、机械损伤和昆虫取食等对植物挥发性化合物合成与释放的影响机制。  相似文献   

15.
《Mycoscience》2020,61(2):65-70
A stinkhorn fungus was collected from the mountainous area of Yoshida campus, Yamaguchi University, Japan. Morphological characterization and similarity of large subunit ribosomal DNA sequences identified the fungus as Pseudocolus fusiformis. MonoTrap™ was combined with gas chromatography-mass spectrometry (GC-MS) to identify volatile organic compounds (VOCs) emitted from the fungus harvested at different stages of maturity. The main VOCs emitted from the mature fruiting body were 3-methyl-butanol, 4-methyl-phenol, and dimethyl tetrasulfide, while none of these compounds were detected in the egg-shaped state. Volatile sulfur-containing compounds, including dimethyl disulfide, trisulfide and tetrasulfide, which are commonly detected in stinkhorn fungi and truffles, were also emitted from this fungus. Furthermore, results elucidated that most VOCs occurred in the mature stage of Ps. fusiformis (fruiting body with arms fuse). This is the first study reporting VOC production of Ps. fusiformis.  相似文献   

16.
  • Deceptive pollination has been reported in the genus Aristolochia, but the floral biology and pollination strategy of A. bianorii, an endemic of the Balearic Islands, have not yet been studied. Here, we investigated floral anthesis, mating system, pollinators and volatile organic compounds (VOCs) emitted by its flowers.
  • Flower buds were marked and monitored daily to define floral stages and their duration. Experimental bagging and hand-pollination were performed to test for autonomous self-pollination, induced self-pollination and cross-pollination. Flowers were collected to analyse the presence of entrapped pollinators. VOCs emitted by flowers were evaluated by means of solid phase microextraction followed by immediate GC–MS.
  • Anthesis lasted between 63 and 96 h, and the species exhibited autonomous self-pollination with moderate inbreeding depression. Pollinators were mainly females of Oscinomorpha longirostris (Diptera; Chloropidae). The number of pollinators inside flowers was affected by floral stage and time of flowering. The most common VOCs were alkanes, oximes, esters, alkenes, cyclic unsaturated hydrocarbons, isocyanates, amides and carboxylic acids.
  • Aristolochia bianorii can set seed by autonomous self-pollination, in contrast to other Aristolochia species, in which both protogyny and herkogamy prevent autonomous self-pollination. However, the species may encourage cross-pollination by attracting female chloropid flies though emission of floral scents that may mimic an oviposition site and, possibly, freshly killed true bugs (i.e. Heteroptera). In conclusion, A. bianorii promotes cross-pollination, but delayed autonomous self-pollination assures reproductive success in the putative absence of pollinators.
  相似文献   

17.
The development of studies on emissions of volatile organic compounds (VOCs) by inflorescence of oil palms deserves a special attention regarding the importance to reproduction success and for increase of production. This study aimed to evaluate metabolic profiling of VOCs expelled by male and female inflorescences of different oil palm species (African oil palm, Amazonian Caiaué and the interspecific hybrid BRS‐Manicoré), associating the composition variability with main pollinators to improve the comprehension of the plant?insect relationship. The phenylpropanoids, terpenoids and the aliphatic hydrocarbons were predominant classes detected in inflorescences of oil palms and the major compound was estragole. This result may be correlated with attraction of Elaidobius pollinators, since these insects were not attracted by Caiaué, which emitted estragole only in trace amounts. However, Caiaué and the hybrid species were visited by other native species whose frequencies were low and their success as pollinators could not be expected.  相似文献   

18.
The study explores whether or not there are convergent patterns in floral scent composition among plant species that completely or partially rely on butterflies for pollination. Floral scent compounds were analysed from 22 flowering butterfly-pollinated plant species, representing 13 families which originate mainly from temperate North Europe but also from tropical and temperate America. Scents were collected using the dynamic headspace adsorption method and identified with coupled gas chromatography and mass spectrometry (GC-MS). In total, 217 floral scent compounds were identified, with the number per species ranging from 8 to 65. The major emerging pattern is the occurrence of certain compounds emitted exclusively by the flowers of many of the investigated species in major amounts – the benzenoids phenylacetaldehyde and 2-phenylethanol, the monoterpenes linalool and linalool oxide (furanoid) I and II and the irregular terpene oxoisophorone. It is likely that these compounds serve as a signal to attract pollinating butterflies, and may have evolved in conjunction with the sensory capabilities of butterflies as a specific group of pollinators. While there is convergence in terms of the compounds sharing this function there has been a geographical divergence in terms of their relative abundance. The predominance (in terms of both numbers and relative amount) of benzenoids in many of the scent blends of the European temperate species and of linalool and its derivatives in those of the American species constitute two discernible groups among these plants.  © 2002. The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 129–153.  相似文献   

19.
Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’.Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments.Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’.Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant–plant interactions.  相似文献   

20.
对长阳所产皱皮木瓜的开花结果习性作了形态上的描述。先开花后展叶,花序为聚伞花序,花果枝为特化的短缩叶丛枝,梨果发育分两个时期:幼果发育期和果实生长期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号