首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants defend their leaves using multiple defense traits that change functions with leaf age. We examined the effects of leaf age on the development of multiple defense traits in two related Mallotus (Euphorbiaceae) species: young plants of the fast‐growing Mallotus japonicus (Spreng.) Müll. Arg. and the slow‐growing Mallotus philippensis (Lam.) Müll. Arg. Sequential leaves of the two species were measured for their leaf area, leaf mass/area, densities of trichomes and pellucid dots, extrafloral nectar volume, and the numbers of extrafloral nectaries and pearl bodies. Mallotus japonicus shifted its defense tactics from direct defense using trichomes and pellucid dots in young leaves to biotic defense using extrafloral nectar and pearl bodies in middle‐aged leaves. In contrast, M. philippensis used direct, chemical defense throughout all leaf ages, together with the shift from indirect, biotic defense using extrafloral nectar in young leaves to direct, physical defense using leaf toughness in middle‐aged leaves. These results strongly suggest that, in relation to life history, plants can alter optimal combinations of multiple defense traits with leaf age.  相似文献   

2.
Cotton plants (genus Gossypium) are grown on more than 30 million hectares worldwide and are a major source of fiber. The plants possess a wide range of direct and indirect resistance mechanisms against herbivorous arthropods. Direct resistance mechanisms include morphological traits such as trichomes and a range of secondary metabolites. The best known insecticidal compounds are the terpenoid gossypol and its precursors and related compounds. Indirect resistance mechanisms include herbivore-induced volatiles and extrafloral nectaries that allow plants to attract and sustain natural enemy populations. We discuss these resistance traits of cotton, their induction by herbivores, and their impact on herbivores and natural enemies. In addition, we discuss the use of genetically engineered cotton plants to control pest Lepidoptera and the influence of environmental factors on the resistance traits.  相似文献   

3.
Some plant species develop multiple defense traits. To test the hypothesis that plants with both direct and indirect defense traits mainly develop the direct and indirect defense traits under the low and high soil moisture conditions, respectively, the development of multiple defense traits on the young plants of Mallotus japonicus (Thunb.) Muell. Arg., and the number of ants on the plants were experimentally examined under different soil moisture conditions. Under the low soil moisture condition, the plant growth declined, and the trichomes and pellucid dots developed well. The pearl bodies developed on the plants under the high soil moisture condition. The volume of extrafloral nectar secreted and the number of ants on the plants significantly increased under the high soil moisture condition. These results clearly show that the young plants of M. japonicus firmly develop sound direct defense traits under the low soil moisture condition, and they develop indirect defense traits that are less reliable but have relatively low costs under the high soil moisture condition.  相似文献   

4.
Throughout the course of their evolution, plants have acquired a wide range of chemical and mechanical defenses to protect against herbivores. Ehrlich & Raven's coevolutionary theory suggests that this diversification of defensive traits is driven by the strong impact of novel traits on insect herbivores. However, the impact of plant defenses on insects is difficult to compare between related plant species due to variation in environmental and biotic conditions. We standardized these factors as far as possible by analyzing the effects of chemical and mechanical defensive traits on insects in a local community of 11 Salicaceae species growing in sympatry, and their leaf‐chewing herbivores. Defensive traits (salicylates, flavonoids, tannins, trichomes, and leaf toughness) were generally not inter‐correlated, with the exception of a negative correlation between salicylates and trichomes. The content of salicylates, a novel group of defensive metabolites in the Salicaceae, was correlated with low herbivore diversity and high host specificity. Despite these effects, the phylogeny of the studied species shows loss of salicylates in some Salix species instead of their further diversification. This could be due to salicylates not decreasing the overall abundance of herbivores, despite accounting for up to 22% of the dry leaf mass and therefore being costly. The defense of low‐salicylate willow species is thus probably maintained by other defensive traits, such as trichomes. Our study shows that the balance between costs and benefits of defensive traits is not necessarily in favor of novel compounds and illustrates a process, which may lead to the reduction in a defensive trait.  相似文献   

5.
Indirect plant defense against insect herbivores: a review   总被引:2,自引:0,他引:2  
Plants respond to herbivore attack by launching 2 types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defense includes all traits that by themselves do not have significant direct impact on the attacking herbivores, but can attract natural enemies of the herbivores and thus reduce plant loss. When plants recognize herbivore‐associated elicitors, they produce and release a blend of volatiles that can attract predators, parasites, and other natural enemies. Known herbivore‐associated elicitors include fatty acid–amino acid conjugates, sulfur‐containing fatty acids, fragments of cell walls, peptides, esters, and enzymes. Identified plant volatiles include terpenes, nitrogenous compounds, and indoles. In addition, constitive traits including extrafloral nectars, food bodies, and domatia can be further induced to higher levels and attract natural enemies as well as provide food and shelter to carnivores. A better understanding of indirect plant defense at global and componential levels via advanced high throughput technologies may lead to utilization of indirect defense in suppression of herbivore damage to plants.  相似文献   

6.
Many species, both plants and animals, are simultaneously engaged in interactions with multiple mutualists. However, the extent to which separate traits that attract different mutualist guilds display negative or positive relationships remains largely unstudied. We asked whether correlations exist among extrafloral nectary traits to attract arthropod bodyguards and floral traits to attract pollinator mutualists. For 37 species in the cotton genus (Gossypium), we evaluated correlations among six extrafloral nectary traits and four floral traits in a common greenhouse environment, with and without correction for phylogenetic non-independence. Across Gossypium species, greater investment in extrafloral nectary traits was positively correlated with greater investment in floral traits. Positive correlations remained after accounting for the evolutionary history of the clade. Our results demonstrate that traits to maintain multiple mutualist guilds can be positively correlated across related species and build a more general understanding of the constraints on trait evolution in plants.  相似文献   

7.
The effects of direct and indirect defenses differ among plant species, and the variation in the mode of plant defenses might reflect physiological and/or ecological constraints of each mode of defense related to the growth and reproduction of individual plant species. To evaluate the advantages and disadvantages of indirect ant-mediated defense via extrafloral nectaries (EFNs), we compared the herbivory pressure, leaf chemicals, vegetative growth, and reproduction between two species of vetches, Vicia sativa var. angustifolia (Reichard) Wahlenb (Leguminosae) with EFNs and V. hirsuta (L.) SF Gray without EFNs (or with very small EFNs). Indirect ant defense of V. sativa was not consistently reliable because of the low constancy of ant attraction. In addition, V. sativa was more vulnerable to attack by herbivores than V. hirsuta. The estimated total amount of sugars secreted by EFNs of V. sativa corresponded to 0.5% of total leaf biomass, and 0.07% of total plant biomass, indicating a low investment to the production of extrafloral nectar. Vicia sativa plants grew more rapidly than V. hirsuta plants during the reproductive stage. Therefore, we consider that V. sativa adopts the ant defense via EFNs in spite of its low reliability because the indirect ant defense supported by EFNs requires only low investment, allowing the plants to attain rapid growth in the early spring.  相似文献   

8.
The evolution of plant defense traits has traditionally been explained trough the “coevolutionary arms race” between plants and herbivores. According to this, specialist herbivores have evolved to cope effectively with the defensive traits of their host plants and may even use them as a cue for host location. We analyzed the geographic association between leaf trichomes, two tropane alkaloids (putative resistance traits), and leaf damage by herbivores in 28 populations of Datura stramonium in central Mexico. Since the specialist leaf beetles Epitrix parvula and Lema trilineata are the main herbivores of D. stramonium in central Mexico, we predicted a positive association between plant defense and leaf damage across populations. Also, if physical environmental conditions (temperature or precipitation) constrain the expression of plant defense, then the geographic variation in leaf damage should be explained partially by the interaction between defensive traits and environmental factors. Furthermore, we studied the temporal and spatial variation in leaf trichome density and leaf damage in five selected populations of D. stramonium sampled in two periods (1997 vs. 2007). We found a positive association between leaf trichomes density and atropine concentration with leaf damage across populations. The interaction between defensive traits and water availability in each locality had a significant effect on the geographic variation in leaf damage. Differences among populations in leaf trichome density are maintained over time. Our results indicate that local plant–herbivore interaction plays an important role in shaping the geographic and temporal variation in plant defense in D. stramonium.  相似文献   

9.
In the absence of coevolved natural enemies, plants are expected to experience selection away from costly herbivore defenses toward growth and reproduction [evolution of increased competitive ability hypothesis (EICA)], yet no one has demonstrated EICA for an indirect defense trait. Likewise, we have little understanding of how constitutive and induced levels of defense vary among native and invasive plant populations. We conducted a greenhouse experiment in the introduced range to test whether invasive populations have reduced constitutive and induced investment in an indirect defense trait, extrafloral nectar (EFN) production, compared to native populations of Chinese tallow tree, Triadica sebifera, through an experimental leaf damage treatment. Overall, native populations invested more in indirect defense: Native populations had a greater number (+16?%) and percentage of leaves producing EFN (35 vs. 28?%), produced more EFN (63?% greater volume), and produced more sugar (+33?%) compared to invasive populations, independent of damage treatment. Of these traits, number of leaves producing EFN and volume of EFN exhibited a trade-off between constitutive and induced investment but these did not depend on plant origin. Our results are the first to support the EICA hypothesis for an indirect defense trait. This suggests that tri-trophic interactions such as indirect defense are under similar selection as direct defense traits within introduced populations. Despite reduced investment in EFN production, invasive populations still retain the ability to produce EFN, which may enable invasive plants to defend against herbivores in the introduced range.  相似文献   

10.
Gassmann AJ  Hare JD 《Oecologia》2005,144(1):62-71
The costs and benefits of defensive traits in plants can have an ecological component that arises from the effect of defenses on the natural enemies of herbivores. We tested if glandular trichomes in Datura wrightii, a trait that confers resistance to several species of herbivorous insects, impose an ecological cost by decreasing rates of predation by the natural enemies of herbivores. For two common herbivores of D. wrightii, Lema daturaphila and Tupiocoris notatus, several generalized species of natural enemies exhibited lower rates of predation on glandular compared to non-glandular plants. Lower rates of predation were associated with reductions in the residence time and foraging efficiency of natural enemies on plants with glandular trichomes, but not with direct toxic effects of glandular exudate. Our results suggest that the benefit of resistance to herbivores conferred by glandular trichomes might be offset by the detrimental effect of this trait on the natural enemies of herbivores, and that the fitness consequences of this trichome defense might depend on the composition and abundance of the natural-enemy community.  相似文献   

11.
Interspecific New Rice for Africa (NERICA) varieties have been recently developed and used in Sub-Saharan Africa but herbivore resistance properties of these plants remain poorly understood. Here we report that, compared to a local Japanese cultivar Nipponbare, NERICA 1, 4 and 10 are significantly more damaged by insect herbivores in the paddy fields. In contrast to high levels of leaf damage from rice skippers and grasshoppers, constitutive and induced volatile organic compounds for indirect plant defense were higher or similar in NERICAs and Nipponbare. Accumulation of direct defense secondary metabolites, momilactones A and B, and p-coumaroylputrescine (CoP) was reduced in NERICAs, while feruloylputrescine accumulated at similar levels in all varieties. Finally, we found that Nipponbare leaves were covered with sharp nonglandular trichomes impregnated with silicon but comparable defense structures were virtually absent in herbivory-prone NERICA plants. As damage to the larval gut membranes by Nipponbare silicified trichomes that pass intact through the insect digestive system, occurs, and larval performance is enhanced by trichome removal from otherwise chemically defended Nipponbare plants, we propose that silicified trichomes work as an important defense mechanism of rice against chewing insect herbivores.  相似文献   

12.
Cotton plants contain suites of phytochemicals thought to be important in defense against herbivores, some of which are localized in pigment glands which contain gossypol and other terpenoid aldehydes. The simple genetic basis for the expression of these glands has led to the development of near-isogenic glanded and glandless genotypes. Glands may also be phenotypically induced by herbivory. We determined the consequences of constitutive and induced gland expression on two types of herbivores, spider mites (cell content feeders) and noctuid caterpillars (leaf chewers).Induction of glands was strongly dependent on the density of attackers. Spider mite herbivory on cotyledons (1) increased the density (but not total number) of glands on cotyledons linearly, (2) increased the density and total number of glands on the first true leaf linearly, and (3) affected the density and total number of glands on the second true leaf non-linearly, compared to controls. Neither constitutive nor induced expression of glands affected mite population growth. An equal reduction of mite population size on induced glanded and glandless plants (50%) relative to uninduced controls indicated that factors other than glands were associated with induced resistance to mites. Constitutive gland expression had a strong negative impact on caterpillar performance, reducing growth by 45%. Induced resistance to caterpillars was three times stronger in glanded genotypes than in glandless genotypes, indicating that factors associated with induced resistance to caterpillars are strongly associated with glands. Three cotton varieties were highly variable in their constitutive and induced resistance to mites and caterpillars.Thus, defense of cotton plants against herbivores can be roughly categorized as constitutive and inducible factors associated with terpenoid aldehyde containing pigment glands that are effective against caterpillars, and factors not associated with glands that are effective against mites.  相似文献   

13.
The extrafloral nectaries of many plants promote ant defense against insect herbivores. We examined the influence of extrafloral nectaries on the levels of parasitism of a generalist insect herbivore, the gypsy moth (Lymantria dispar L.). Larvae and pupae of the moth were collected from trees with and without extrafloral nectaries growing in the same forests in South Korea and reared to evaluate parasitism. More parasitism occurred on plants with extrafloral nectaries in seven of the nine season-long collections at the six sites and in four out of five collecting periods. Parasitism was higher on the four main genera of plants with extrafloral nectaries than on any of five main genera of plants without extrafloral nectaries. There was no difference in parasitoid richness; nine species occurred in each group, eight of which were the same. There was a positive and almost significant correlation between the abundance of plants with extrafloral nectaries and the parasitism of gypsy moth at the sites. Extrafloral nectaries may reduce herbivory by inducing more parasitism of the insect herbivores that attack plants bearing the glands.  相似文献   

14.
  • The induction of defences in response to herbivory is a key mechanism of plant resistance. While a number of studies have investigated the time course and magnitude of plant induction in response to a single event of herbivory, few have looked at the effects of recurrent herbivory. Furthermore, studies measuring the effects of the total amount and recurrence of herbivory on both direct and indirect plant defences are lacking. To address this gap, here we asked whether insect leaf herbivory induced changes in the amount and concentration of extrafloral nectar (an indirect defence) and concentration of leaf phenolic compounds (a direct defence) in wild cotton (Gossypium hirsutum).
  • We conducted a greenhouse experiment where we tested single event or recurrent herbivory effects on defence induction by applying mechanical leaf damage and caterpillar (Spodoptera frugiperda) regurgitant.
  • Single events of 25% and 50% leaf damage did not significantly influence extrafloral nectar production or concentration. Extrafloral nectar traits did, however, increase significantly relative to controls when plants were exposed to recurrent herbivory (two episodes of 25% damage). In contrast, phenolic compounds increased significantly in response to single events of  leaf damage but not to recurrent damage. In addition, we found. that local induction of extrafloral nectar production was stronger than systemic induction, whereas the reverse pattern was observed for phenolics.
  • Together, these results reveal seemingly inverse patterns of induction of direct and indirect defences in response to herbivory in wild cotton.
  相似文献   

15.
Plant defences against herbivores include direct defences such as secondary metabolites or physical structures (e.g. trichomes) as well as indirect defences mediated via mutualistic interactions with other organisms including ants. Production of both direct defences and rewards for mutualistic ants may be costly for a plant, and it has been suggested that trade-offs may exist between direct and ant-mediated defences. We have conducted a meta-analysis of 25 studies testing the above hypothesis and found a significant negative correlation between plant allocation to direct and ant-mediated defences. The strength of correlation was similar for across- and within-species comparisons, and for chemical and physical direct defences. However, trade-offs with direct defences were significant only in plants which offered to ants more costly rewards such as food bodies and/or domatia, but not in plants which attracted ants with relatively cheap extrafloral nectaries. Our results therefore support the hypothesis that plant investment in ant-mediated defences may reduce the requirement for direct chemical and physical defences, but only in plants which offer more costly rewards to their bodyguards.  相似文献   

16.
Theory predicts that trade-offs between resistance to herbivory and other traits positively affecting fitness can maintain genetic variation in resistance within plant populations. In the perennial herb Arabidopsis lyrata, trichome production is a resistance trait that exhibits both qualitative and quantitative variation. Using a paternal half-sib design, we conducted two greenhouse experiments to ask whether trichomes confer resistance to oviposition and leaf herbivory by the specialist moth Plutella xylostella, and to examine potential genetic constraints on evolution of increased resistance and trichome density. In addition, we examined whether trichome production is induced by insect herbivory. We found strong positive genetic and phenotypic correlations between leaf trichome density and resistance to leaf herbivory, demonstrating that the production of leaf trichomes increases resistance to leaf damage by P. xylostella. Also resistance to oviposition tended to increase with increasing leaf trichome density, but genetic and phenotypic correlations were not statistically significant. Trichome density and resistance to leaf herbivory were negatively correlated genetically with plant size in the absence of herbivores, but not in the presence of herbivores. There was no evidence of increased trichome production after leaf damage by P. xylostella. The results suggest that trichome production and resistance to leaf herbivory are associated with a cost and that the direction of selection on resistance and trichome density depends on the intensity of herbivory.  相似文献   

17.
A wide range of susceptibility exists across elm (Ulmus) species and hybrids to the elm leaf beetle, Pyrrhalta luteola (Müller) (Coleoptera: Chrysomelidae). We evaluated various elm species, hybrids, or cultivars (taxa) growing in an experimental plantation in the city of Holbrook, AZ, for leaf anatomical (toughness and trichome density) and nutritional (minerals and sugars) traits that may be associated with host resistance. Leaf toughness and percentage of defoliation (susceptibility) were not correlated. However, we found weak negative correlations between percentage of defoliation and density of trichomes on the leaf abaxial surface. Of the 11 leaf nutrients examined, concentrations of iron and phosphorus correlated inversely with percentage of defoliation. The remaining nine traits did not show any correlation with percentage of defoliation. We concluded that individual anatomical and nutritional traits of elm species/hybrids do not seem to create a strong barrier to elm leaf beetle defoliation. However, the results from a stepwise multiple regression analysis indicated that collectively, these traits may play an important role in determining susceptibility.  相似文献   

18.
Changes in morphology and chemistry of leaf surface in response to herbivore damage may increase plant resistance to subsequent herbivore attack; however, there is lack of studies on induced responses of glandular trichomes and their exudates in woody plants and on effects of these changes on herbivores. We studied delayed induced responses in leaf surface traits of five clones of silver birch (Betula pendula Roth) subjected to various types of mechanical defoliation and simulated winter browsing. Glandular trichome density and concentrations of the majority of surface lipophilic compounds increased in trees defoliated during the previous summer. This induced response was systemic, since control branches in branch defoliated trees responded to the treatments similarly to defoliated branches, but differently from control trees. In contrast to defoliation treatments, simulated winter browsing reduced glandular trichome density on the following summer and had fewer effects on individual surface lipophilic compounds. Moreover, constitutive density of glandular trichomes was negatively correlated with induced total amount of lipophilic compounds per trichome, indicating a trade-off between constitutive and induced resistance in silver birch. Induced changes in leaf surface traits had no significant effect on leaf damage by chewers, miners and gall mites, but increased susceptibility of birch trees to aphids. However, leaf damage by chewers, miners and gall mites in defoliated (but not in control) trees was correlated with concentrations of some fatty acids and triterpenoids, although the direction of relationships varied among herbivore species. This indicates that induction of surface lipophilic compounds may influence birch resistance to herbivores. Our study thus demonstrated both specificity of elicitation of induced responses of birch leaf surface traits by different types of damage and specificity of the effects of these responses on different types of herbivores.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Plants have traits against herbivory that may occur together and increase defense efficiency. We tested whether there are defense syndromes in a cerrado community and, if so, whether there is a phylogenetic signal in them. We measured nine defense traits from a woodland cerrado community in southeastern Brazil. We tested the correlation between all pairs of traits and grouped the species into defense syndromes according to their traits. Most pairwise correlations of traits were complementary. Plants with lower specific leaf area also presented tougher leaves, with low nitrogen, more trichomes, and tannins. We found five syndromes: two with low defenses and high nutritional quality, two with high defenses and low nutritional quality, and one with traits compensating each other. There were two predominant strategies against herbivory in cerrado: “tolerance” and “low nutritional quality” syndromes. Phylogeny did not determine the suite of traits species presented. We argue that herbivory exerts significant selection pressure on these plant defense traits.  相似文献   

20.
Insect herbivory imposes a strong selection pressure on plants. As a result, plants have evolved a wide array of defences, including resistance traits that help them reduce the negative impact of herbivores. Along one axis of variation, these traits can be divided into direct resistance (physical and chemical defences) and indirect resistance (the recruitment of natural enemies of the herbivore via extrafloral nectar and other incentives). Along a second axis of variation, resistance can be split into constitutive resistance, which is always present, and induced resistance, which is expressed more strongly following damage to plant tissues. Interestingly, the strength and efficacy of all of constitutive-direct, constitutive-indirect, induced-direct, and induced-indirect resistance can vary with plant age and ontological stage. Here, we examine the effect of plant age on an induced-indirect resistance trait, the deployment of extrafloral nectaries (EFNs) to attract pugnacious ants, in a short-lived annual, broad bean (Vicia faba L.). We demonstrate that in severely damaged plants, the induction of EFNs is greater in older plants (5?C6?weeks) than in younger plants (2?C4?weeks); however, in more moderately damaged plants, the induction of EFNs is unaffected by plant age. This suggests the hypothesis that a plant??s ability to induce extrafloral nectar, and therefore recruit more ant ??bodyguards,?? may be related to the interaction of plant age and severity of damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号