首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antisense oligonucleotides (AS-ODNs) specifically hybridize with target mRNAs, resulting in interference with the splicing mechanism or the regulation of protein translation. In our previous reports, we demonstrated that β-glucan schizophyllan (SPG) can form a complex with AS-ODNs attached with oligo deoxyadenosine dA40 (AS-ODN-dA40/SPG), and that this complex can be recognized by β-glucan receptor Dectin-1 on antigen presenting cells and lung cancer cells. In many types of cancer cell, activating K-ras mutations related to malignancy are frequently observed. In this study, we first designed 78 AS-ODNs for K-ras to optimize the sequence for highly efficient gene suppression. The selected AS-ODN (K-AS07) having dA40 made a complex with SPG. The resultant complex (K-AS07-dA40/SPG) showed an effect of silencing the ras gene in the cells (PC9: human adenocarcinoma differentiated from lung tissue) expressing Dectin-1, leading to the suppression of cell growth. Furthermore, the cytotoxic effect was enhanced when used in combination with the anticancer drug gemcitabine. Gemcitabine, a derivative of cytidine, was shown to interact with dA40 in a sequence-dependent manner. This interaction did not appear to be so strong, with the gemcitabine being released from the complex after internalization into the cells. SPG and the dA40 part of K-AS07-dA40 play roles in carriers for K-AS07 and gemcitabine, respectively, resulting in a strong cytotoxic effect. This combination effect is a novel feature of the AS-ODN-dA40/SPG complexes. These results could facilitate the clinical application of these complexes for cancer treatment.  相似文献   

2.
Myoblasts gene-engineered in vitro and then injected in vivo are safe, efficient options for gene therapy. While isolation of satellite cells is routinely achieved, their proliferation potential in vitro remains a limiting factor for cell transplantation under clinical conditions. We have studied the role of reversible inhibition of gene expression by antisense oligonucleotides on the proliferation of the myogenic cells. Addition of antisense oligonucleotides to myoblast cultures has been used to inhibit specifically the expression of the β1-integrin subunit gene. Here we show that the effects of multiple pulses of a phosphorothioate oligodeoxinucleotide antisense on the attachment to substrata and on the proliferation of myoblasts are dose-dependent. The addition of antisense to rat myoblasts caused rounding up of the cells and most of the cells became detached after several days in culture. A single pulse did not show any consistent effect, while in the presence of continously administered antisense, the relative numbers of myoblasts in the treated muscle culture increased. We have no evidence of inhibition of myoblast fusion under these conditions. On the other hand, [3H]-TdR incorporation, total DNA and total number of cells decreased in antisense-treated cultures thus demonstrating an inhibitory effect of the phosphorothioate oligonucleotides on DNA synthesis. These side-effects could be overcome by substituting the phosphorothioate by unmodified oligonucleotides, so decreasing the half-life of the antisense, but also its toxicity. The overall results suggest a potential role of integrin antisense strategy in modulating the potential of myoblasts to proliferate.  相似文献   

3.
4.
β-hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the GM2 gangliosidoses. β-hexosaminidase activity is many times higher in the epididymis than in other tissues, is present in sperm, and is postulated to be required for mammalian fertilization. To better understand which cells are responsible for β-hexosaminidase expression and how it is regulated in the male reproductive system, we quantitated the mRNA expression of the α- and β-subunits of β-hexosaminidase and carried out immunocytochemical localization studies of the enzyme in the rat testis and epididymis. β-hexosaminidase α-subunit mRNA was abundant and differentially expressed in the adult rat testis and epididymis, at 13- and 2-fold brain levels, respectively. In contrast, β-subunit mRNA levels in the testis and epididymis were 0.3- and 5-fold brain levels. During testis development from 7–91 postnatal days of age, testis levels of α-subunit mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium; in contrast, β-subunit mRNA was expressed at low levels throughout testis development. In isolated male germ cells, β-hexosaminidase α-subunit expression was most abundant in haploid round spermatids, whereas the β-subunit mRNA was not detected in germ cells. Within the epididymis both α- and β-subunit mRNA concentrations were highest in the corpus, with 1.5-fold and 9-fold initial segment values, respectively. Light microscopic immunocytochemistry revealed that β-hexosaminidase was localized to Sertoli cells and interstitial macrophages in the testis. In the epididymis, β-hexosaminidase staining was most intense in narrow cells in the initial segment, principal cells in the caput, and proximal corpus, and clear cells throughout the duct. Electron microscopic immunocytochemistry revealed that β-hexosaminidase was predominantly present in lysosomes in Sertoli and epididymal cells. The cellular and regional specificity of β-hexosaminidase immunolocalization suggest an important role for the enzyme in testicular and epididymal functions. Mol. Reprod. Dev. 46:227–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Spodoptera frugiperda β-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against β-1,3-glucan (laminarin), but cannot hydrolyze yeast β-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive β-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of β-1,3-glucanases and β-glucan-binding protein supports the assumption that the β-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived β-1,3-glucanases by the loss of an extended N-terminal region and the β-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells.  相似文献   

6.
7.
Previous studies have shown that β-glucans extracted from yeast or fungi potentiate immune responses. In the present study, the immunomodulatory activities of β-(1→3, 1→4)-glucan, derived from oats, were investigated. The ability of oat β-glucan (OβG) to stimulate IL-1 and TNF-α release from murine peritoneal macrophages and the murine macrophage cell line P338D1, was assessed. In vitro stimulation of macrophages with OβG resulted in the production of IL-1 in a dose and time-dependent manner, whereas only small amounts of TNF-α could be detected in the culture supernatants. OβG also induced the production of IL-2, IFN-γ and IL-4 secretion in a dose-dependent manner in cultured spleen cells. The intraperitoneal administration of OβG in mice resulted in the accumulation of leucocytes, predominantly macrophages, in the peritoneal cavity. Furthermore, OβG was tested for its ability to enhance non-specific resistance to a bacterial challenge in mice. Survival of mice challenged with Staphylococcus aureus was enhanced by a single intraperitoneal administration of 500 μg of OβG 3 days prior to bacterial challenge. In conclusion, these studies demonstrated that OβG possesses immunomodulatory activities capable of stimulating immune functions both in vitro and in vivo.  相似文献   

8.
The biosynthesis of protein-bound complex N-glycans in mammals requires a series of covalent modifications governed by a large number of specific glycosyltransferases and glycosidases. The addition of oligosaccharide to an asparagine residue on a nascent polypeptide chain begins in the endoplasmic reticulum. Oligosaccharide processing continues in the Golgi apparatus to produce a diversity of glycan structures. UDP-N-acetylglucosamine:α-3- -mannoside β-1,2-N-acetylglucosaminyltransferase I (EC 2.4.1.101; GlcNAc-TI) is a key enzyme in the process because it is essential for the conversion of high-mannose N-glycans to complex and hybrid N-glycans. We have isolated the mouse gene encoding GlcNAc-TI (Mgat-1) from a genomic DNA library. The mouse sequence is highly conserved with respect to the human and rabbit homologs and exists as a single protein-encoding exon. Mgat-1 was mapped to mouse Chromosome 11, closely linked to the gene encoding interleukin-3 by the analysis of multilocus interspecies backcrosses. RNA analyses of Mgat-1 expression levels revealed significant variation among normal tissues and cells.  相似文献   

9.
10.
Two γ-aminobutyric acidA (GABAA) receptor chimeras were designed in order to elucidate the structural requirements for GABAA receptor desensitization and assembly. The (α1/γ2) and (γ2/α1) chimeric subunits representing the extracellular N-terminal domain of α1 or γ2 and the remainder of the γ2 or α1 subunits, respectively, were expressed with β2 and β2γ2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (α1/γ2)β2 and (α1/γ2)β2γ2 but not the (γ2/α1)β2 and (γ2/α1)β2γ2 subunit combinations formed functional receptor complexes as shown by whole-cell patch–clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (α1/γ2)-containing receptors was pronounced, as opposed to the staining of the (γ2/α1)-containing receptors, which was only slightly higher than background. To explain this, the (α1/γ2) and (γ2/α1) chimeras may act like α1 and γ2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (α1/γ2) chimeric subunit had characteristics different from the α1 subunit, since the (α1/γ2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch–clamp recordings, which was independent of whether the chimera was expressed in combination with β2 or β2γ2. Surprisingly, the (α1/γ2)(γ2/α1)β2 subunit combination did desensitize, indicating that the C-terminal segment of the α1 subunit may be important for desensitization. Moreover, desensitization was observed for the (α1/γ2)β2γ2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

11.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β- -fructofuranosyl α- -galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

12.
13.
以发根农杆菌A4菌株诱导的人参发根为材料,用改良的异硫氰酸胍法提取总RNA,得到了纯度好的完整的总RNA。利用RT-PCR扩增了β香树素合成酶基因,测序结果表明该目的片段与Gene Bank上的β香树素合成酶基因序列一致。这一基因重组入克隆载体pMD-119T, 并转化大肠杆菌。 在此基础上,利用pBI121质粒载体,构建了人参β香树素合成酶基因的反义植物表达载体,为这一基因的反义调控研究打下基础。  相似文献   

14.
15.
16.
We present a fully automatic structural classification of supersecondary structure units, consisting of two hydrogen-bonded β strands, preceded or followed by an α helix. The classification is performed on the spatial arrangement of the secondary structure elements, irrespective of the length and conformation of the intervening loops. The similarity of the arrangements is estimated by a structure alignment procedure that uses as similarity measure the root mean square deviation of superimposed backbone atoms. Applied to a set of 141 well-resolved nonhomologous protein structures, the classification yields 11 families of recurrent arrangements. In addition, fragments that are structurally intermediate between the families are found; they reveal the continuity of the classification. The analysis of the families shows that the α helix and β hairpin axes can adopt virtually all relative orientations, with, however, some preferable orientations; moreover, according to the orientation, preferences in the left/right handedness of the α–β connection are observed. These preferences can be explained by favorable side by side packing of the α helix and the β hairpin, local interactions in the region of the α–β connection or stabilizing environments in the parent protein. Furthermore, fold recognition procedures and structure prediction algorithms coupled to database-derived potentials suggest that the preferable nature of these arrangements does not imply their intrinsic stability. They usually accommodate a large number of sequences, of which only a subset is predicted to stabilize the motif. The motifs predicted as stable could correspond to nuclei formed at the very beginning of the folding process. Proteins 30:193–212, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Microtubules provide structural support for a cell and play key roles in cell motility, mitosis, and meiosis. They are also the targets of several anticancer agents, indicating their importance in maintaining cell viability. We have investigated the possibility that alterations in microtubule structure and tubulin polymerization may be part of the cellular response to DNA damage. In this report, we find that γ-radiation stimulates the production and polymerization of α-, β-, and γ- tubulin in hematopoeitic cell lines (Ramos, DP16), leading to visible changes in microtubule structures. We have found that this microtubule reorganization can be prevented by caffeine, a drug that concomitantly inhibits DNA damage-induced cell cycle arrest and apoptosis. Our results support the idea that microtubule polymerization is an important facet of the mammalian response to DNA damage.  相似文献   

18.
The syntheses are described of 2,3-di-O-glycosyl derivatives of methyl α- and β- -glucopyranoside having α- -manno-, β- -galacto-, α- -rhamno-, α- -fuco-, and β- -fuco-pyranosyl substitutents at O-2 and O-3. The syntheses involved glycoslation of methyl 4,6-O-(benzylidene-α- (24) and β- -glucopyranoside (21), and substituted derivatives of 21 bearing 2-O-(2,3,4,6-tetra-O-benzyl-α- -mannopyranosyl)-, -(2,3,4,6-tetra-O-acetyl-β- -galactopyranosyl)-, -(2,3,4-tri-O-benzyol-α- -rhamnopyranosyl)-, and-(2,3,4-tri-O-benzoyl-β- -fucopyranosyl) groups.  相似文献   

19.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

20.
The properties of films prepared from a high molecular weight (mol. wt: 7·5 × 106 g/mol) branched β-1,3- -glucan (schizophyllan) and a polyalcohol (mol. wt: 7·3 × 106 g/mol) derived from schizophyllan by periodate oxidation and subsequent borohydride reduction are described. The films can only be prepared by casting from aqueous solutions, because the polymers are not thermoplastic. They have a low permeability to oxygen, but a high permeability to water vapour. The tensile strength of the films is 45–58 N/mm−2 for schizophyllan and 12–18 N/mm2 for the polyalcohol, and both, but especially the polyalcohol films, have a low elongation at break. Films prepared from both polymers, under conditions where the triple helices are disrupted (>0·01 NaOH), show lower tensile strength and elongations at break as well as higher oxygen permeabilities. A relationship exists between the water content of the films and the tensile strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号