首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
That thiamine has a role in nerve conduction as well as synaptic transmission is suggested by the following observations. (1) Thiamine phosphate esters are hydrolyzed and released from nerve membranes during nerve conduction. (2) Ultraviolet radiation of single nerve fibers at the wavelength specific for thiamine destroys the ability of that nerve to conduct an impulse. (3) Thiamine diphosphatase (TDPase) is present on synaptosomes. Previous articles have characterized an alkaline active TDPase in brain; this report characterizes a pH 5 active TDPase and compares its properties to the pH 9 enzyme. Both enzymes require a divalent cation for optimal activity. The pH 5 enzyme is more sensitive to ATP. Myelin fractions of brain have the highest specific activity for the acid TDPase, and the nerve ending particles the highest total activity. No PO4 3– inhibition was observed. Kinetic constants of this enzyme activity are reported.  相似文献   

2.
Studies were made of the effects of maternal thiamine deficiency on rat whole brain, gray matter and white matter lipids. Mothers were fed a high protein diet (controls) or thiamine deficient high protein diet (thiamine deficient, TD) from 14th day of gestation through lactation. An additional group (pair fed control, PFC) was pair fed with the thiamine deficient group. The TD pups started showing symptoms of abnormalities in posture, arched back and hind limb paralysis from 16th day of lactation. Significant deficits were found in body weight and brain weight of TD and PFC pups. But the deficits seem to be more in the former group. Significant deficits were observed with regard to the concentration of lipids such as galactolipids, phospholipids and plasmalogens in the whole brain of TD and PFC pups at 21 days of age. Additional deficits were also found in the concentration of cholesterol in PFC pups. Gray matter lipids from TD pups seem to be completely spared. However, deficits were found in galactolipid and ganglioside concentrations in PFC pups. The deficits found in the concentration of different lipids in white matter are similar to those observed in whole brain. These results suggest that the effects of thiamine deficiency may be partly due to resultant growth retardation and partly due to the deficiency of thiamine per se.  相似文献   

3.
Thiamine phosphate esters (thiamine monophosphate-TMP; thiamine diphosphate-TDP and thiamine triphosphate-TTP) were measured as their thiochrome derivatives by High Performance Liquid Chromatography in the brains of pyrithiamine-treated rats at various stages during the development of thiamine deficiency encephalopathy. Severe encephalopathy was accompanied by significant reductions of all three thiamine phosphate esters in brain. Neurological symptoms of thiamine deficiency appeared when brain levels of TMP and TDP fell below 15% of normal values. Activities of the TDP-dependent enzyme -ketoglutarate dehydrogenase were more severely reduced in thalamus compared to cerebral cortex, a less vulnerable brain structure. On the other hand, reductions of TTP, the non-cofactor form of thiamine, occurred to a greater extent in cerebral cortex than thalamus. Early reductions of TDP-dependent enzymes and the ensuing metabolic pertubations such as lactic acidosis impaired brain energy metabolism, and NMDA-receptor mediated excitotoxicity offer rational explanations for the selective vulnerability of brain structures such as thalamus to the deleterious effects of thiamine deficiency.  相似文献   

4.
Thiamine has been shown to be bound specifically by a synaptosomal plasmatic membrane and transported inside to the nervous ending. Apparent K[symbol: see text] and Km for processes of binding and transport have been determined as equal 2.34 +/- 0.55 MKM and 3.92 +/- 1.3 MKM, respectively. The thiamine uptake by the isolated nervous endings (synaptosomes) at its physiological concentration is reduced in presence of metabolic inhibitors and partially depends on Mg2+ and Ca2+ ions, that can testify about the interrelation between endogenic thiamine phosphorilation and its transport through the membrane. Thiamine binding with synaptosomes is inhibited by ouabain and neurotoxins such as, latrotoxin and most significantly--with veratridin; tetrodotoxin fail to be efficient practically. In the conditions of synaptic membranes depolarisation their ability to bind thiamine is reduced and output of already uptaken with synaptosomes thiamine is observed.  相似文献   

5.
Thiamine is required for all tissues and is found in high concentrations in skeletal muscle, heart, liver, kidneys and brain. A state of severe depletion is seen in patients on a strict thiamine-deficient diet in 18 days, but the most common cause of thiamine deficiency in affluent countries is alcoholism. Thiamine diphosphate is the active form of thiamine, and it serves as a cofactor for several enzymes involved primarily in carbohydrate catabolism. The enzymes are important in the biosynthesis of a number of cell constituents, including neurotransmitters, and for the production of reducing equivalents used in oxidant stress defenses and in biosyntheses and for synthesis of pentoses used as nucleic acid precursors. Because of the latter fact, thiamine utilization is increased in tumor cells. Thiamine uptake by the small intestines and by cells within various organs is mediated by a saturable, high affinity transport system. Alcohol affects thiamine uptake and other aspects of thiamine utilization, and these effects may contribute to the prevalence of thiamine deficiency in alcoholics. The major manifestations of thiamine deficiency in humans involve the cardiovascular (wet beriberi) and nervous (dry beriberi, or neuropathy and/or Wernicke-Korsakoff syndrome) systems. A number of inborn errors of metabolism have been described in which clinical improvements can be documented following administration of pharmacological doses of thiamine, such as thiamine-responsive megaloblastic anemia. Substantial efforts are being made to understand the genetic and biochemical determinants of inter-individual differences in susceptibility to development of thiamine deficiency-related disorders and of the differential vulnerabilities of tissues and cell types to thiamine deficiency.  相似文献   

6.
Polyacrylamide gel electrophoresis was used to investigate the relation of the soluble thiamine triphosphatase activity of various rat tissues to other phosphatases. This technique separated the thiamine triphosphatase of rat brain, heart, kidney, liver, lung, muscle and spleen from alkaline phosphatase (EC 3.1.3.1), acid phosphatase (EC 3.1.3.2) and other nonspecific phosphatase activities. In contrast, the hydrolytic activity for thiamine triphosphate in rat intestine moved identically with alkaline phosphatase in gel electrophoresis. Thiamine triphosphatase from rat liver and brain was also separated from alkaline phosphatase and acid phosphatase by gel chromatography on Sephadex G-100. This gave an apparent molecular weight of about 30,000 and a Stokes radius of 2.5 nanometers for brain and liver thiamine triphosphatase. The intestinal thiamine triphosphatase activity of the rat was eluted from the Sephadex G-100 column as two separate peaks (with apparent molecular weights of over 200,000 and 123,000) which exactly corresponded to the peaks of alkaline phosphatase. The isoelectric point (pI) of the brain thiamine triphosphatase was 4.6 (4 degrees C). The partially purified thiamine triphosphatase from brain and liver was highly specific for thiamine triphosphate. The results suggest that, apart from the intestine, the rat tissues studied contain a specific enzyme, thiamine triphosphatase (EC 3.6.1.28). The specific enzyme is responsible for most of the thiamine triphosphatase activity in these tissues. Rat intestine contains a high thiamine triphosphatase activity but all of it appears to be due to alkaline phosphatase.  相似文献   

7.
The distribution of thiamine, thiamine phosphoesters, and the thiamine pyrophosphate synthetizing [thiamine-pyrophosphokinase (TPKase)] as well as hydrolyzing [thiamine pyrophosphatase (TPPase) and thiamine monophosphatase (TMPase)] enzymes was determined in neuronal and glial enriched fractions prepared from rat brain. Nucleoside diphosphatases [inosine diphosphatase (IDPase) and uridine diphosphatase (UDPase)] and nucleoside monophosphatases [uridine monophosphatase (UMPase) and inosine monophosphatase (IMPase)] were also determined. Thiamine and thiamine mono- and pyrophosphate were present in neuronal enriched fractions at concentrations 2.8, 3.6, and 4.6 times higher than in glial fractions. TMPase was found only in glial enriched fractions, whereas the levels of TPKase, UMPase, IMPase, IDPase, UDPase, and TPPase were 2.0-, 2.2-, 1.3-, 2.8-, 3.7-, and 20.8-fold higher in neuronal than in glial fractions.  相似文献   

8.
Previous studies suggest that developing rat brain is susceptible to reduced thiamine intake. In order to assess the metabolic basis for this susceptibility, activities of three thiamine-dependent enzymes (pyruvate dehydrogenase complex, -ketoglutarate dehydrogenase and transketolase) were measured in homogenates of brain tissue from the offspring of thiamine-deficient mothers. Control groups of animals were pair-fed to equal food consumption with the thiamine-deficient animals. The study revealed region-selective delays in the establishment of adult activities of thiamine-dependent enzymes as a result of maternal thiamine deficiency. Pyruvate dehydrogenase complex activities in cerebral cortex were significantly reduced (by 20% P < 0.05); -ketoglutarate dehydrogenase activities were also reduced in cerebral cortex (by 30% P < 0.05). In the case of transketolase, enzyme activities were significantly reduced in cerebral cortex, cerebellum and brainstem. Following thiamine replenishment, defective enzyme activities were restored to normal in all cases. However, since thiamine-dependent enzymes are important for the establishment of adult patterns of cerebral energy metabolism and also in myelin synthesis, maternal thiamine deficiency resulting in reductions of thiamine-dependent enzymes at a vulnerable period in brain development could have serious metabolic consequences leading to permanent neurological sequellae in the offspring.  相似文献   

9.
Thiamine at a concentration of 1×10–14 to 1×10–4 M facilitated neuromuscular transmission at the glutaminergic synapse of the crayfish adapter, manifesting as increased amplitude and quantal content of excitatory postsynaptic potentials and raised frequency of miniature excitatory postsynaptic potentials. Thiamine augmented spontaneous electrical activity and the amplitude of synaptic potentials in the longitudinal muscle of guinea pig taenia coli. It was found from studying the effects of thiamine on the membrane potential of rat brain synaptosomes that its presynaptic action is brought about by depolarization of the nerve terminal membrane. Interaction between thiamine and the nerve endings was described by a Hill coefficient of 0.22–0.30, indicating that it has several binding sites within the structure of the receptor concerned.A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 621–629, September–October, 1986.  相似文献   

10.
Anticoenzyme action of new derivatives of thiamine: oxodihydrothiochrome and its mono- and diphosphoric esters has been studied in the experiments on mice. It is shown that the given compounds exert an inhibiting action on transketolase and pyruvate dehydrogenase and do not change activity of 2-oxoglutarate dehydrogenase in the animal organism. Antivitamin effect of the studied inhibitors is observed with the lower doses and in the earlier terms as compared with the other known inhibitors of thiamine-diphosphate-dependent enzymes. The preparations inhibit activity of the yeast pyruvate-decarboxylase by the mixed (with respect to thiamine-diphosphate) type (Ki for oxodihydrothiochrome and its mono- and diphosphoric esters: 2.3 x 10(-3), 7.2 x 10(-4), 5.6 x 10(-5) M, respectively). Possible mechanisms of the action of the mentioned compounds as thiamine antimetabolites are discussed.  相似文献   

11.
Participation of the enzyme which provides the phosphorylation of thiamine to thiamindiphosphate (TDP) thiaminkinase (thiaminpyrophosphokinase, KF 2.7.6.2) of rat brain in the realization of thiamine action on the syntheses of acethylcholine (AC) was studied. The thiamine and its structure analogue, which differ the nature of the radicals in the 3-d and 5-e positions of the thiazollium cycle were used: 3-[(4-amino-2methylpyrimidinyl-5)methyl]-4-methylthiazolium chloride, 3-decyloxycarbonylmethyl-4-metyl-5-beta-hydrozyethylthiazolium chloride, 3-decyloxycarbonylmethyl-4-methylthiazolium chloride. All salts in the concentrations lower then Km render active influence on thiaminkinase. The analysis of data shows the presence of the regulation site on the enzyme distinguishing from the active enzyme centre and participating in the interaction with which the hydrophobic fragments of thiamine molecule participating. The comparative studies of thiamine and above mentioned derivatives influence on the inclusion of the labelled carbon with [2-(14)C] pyruvate in acethylcholine confirm an assumption about the key-role of the thiamine interaction with thiaminkinase (meaning its phosphorilation) regarding its action on the acethylcholine syntheses, and probably, on the function of the nervous cells as a whole.  相似文献   

12.
Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability.  相似文献   

13.
Regulation of thiamine biosynthesis in Saccharomyces cerevisiae.   总被引:5,自引:3,他引:2       下载免费PDF全文
A pho6 mutant of Saccharomyces cerevisiae, lacking a regulatory gene for the synthesis of periplasmic thiamine-repressible acid phosphatase activity, was found to be auxotrophic for thiamine. The activities of four enzymes involved in the synthesis of thiamine monophosphate were hardly detectable in the crude extract from the pho6 mutant. On the other hand, the activities of these enzymes and thiamine-repressible acid phosphatase in a wild-type strain of S. cerevisiae, H42, decreased with the increase in the concentration of thiamine in yeast cells. These results suggest that thiamine synthesis in S. cerevisiae is subject to a positive regulatory gene, PHO6, whereas it is controlled negatively by the intracellular thiamine level.  相似文献   

14.
H Sanemori  Y Egi    T Kawasaki 《Journal of bacteriology》1976,126(3):1030-1036
The pathway of thiamine pyrophosphate (TPP) biosynthesis, which is formed either from exogeneously added thiamine or from the pyrimidine and thiazole moieties of thiamine, in Micrococcus denitrificans was investigated. The following indirect evidence shows that thiamine pyrophosphokinase (EC 2.7.6.2) catalyzes the synthesis of TPP from thiamine: (i) [35S]thiamine incubated with cells of this microorganism was detected in the form of [35S]thiamine; (ii) thiamine gave a much faster rate of TPP synthesis than thiamine monophosphate (TMP) when determined with the extracts; and (iii) a partially purified preparation of the extracts can use thiamine, but not TMP, as the substrate. The activities of the four enzymes involved in TMP synthesis from pyrimidine and thiazole moieties of thiamine were detected in the extracts of M. denitrificans. The extracts contained a high activity of the phosphatase, probably specific for TMP. After M. denitrificans cells were grown on a minimal medium containing 3 mM adenosine, which causes derepression of de novo thiamine biosynthesis in Escherichia coli, the activities of the four enzymes involved with TMP synthesis, the TMP phosphatase, and the thiamine pyrophosphokinase were enhanced two- to threefold. These results indicate that TPP is synthesized directly from thiamine without forming TMP as an intermediate and that de novo synthesis of TPP from the pyrimidine and thiazole moieties involves the formation of TMP, followed by hydrolysis to thiamine, which is then converted to TPP directly. Thus, the pathway of TPP synthesis from TMP synthesized de novo in M. denitrificans is different from that found in E. coli, in which TMP synthesized de novo is converted directly to TPP without producing thiamine.  相似文献   

15.
Pig brain thiamine pyrophosphokinase (ATP: thiamine pyrophosphotransferase, EC 2.7.6.2) was purified 260-fold over extracts of brain acetone powder. A direct, radiometric assay was used to follow the purification. By isoelectric focusing, the purified enzyme appeared to have an isoionic point of approx. pH 4.2, but these preparations were still not homogeneous by disc-gel electrophoresis nor by analytical ultracentrifugation. The purified enzyme has a broad pH optimum extending from pH 8.3 to 9.3 in 0.028 M phosphate/glycylglycine buffers. For optimal enzymatic activity, the ratio of magnesium to ATP must be fixed at 0.6, which suggests that for this ATP-pyrophosphoryl transfer reaction, the enzymatically preferred reactant may be Mg(ATP)6-/2. A preliminary study of the kinetics of the reaction reveals that the enzyme may function via a partial "ping-pong" mechanism; on this basis, dissociation constants for ATPt and for thiamine were evaluated. Pyrithiamine, butylthiamine, ethylthiamine, and oxythiamine appeared to be competitive inhibitors with respect to thiamine as the variable substrate, and their inhibitor dissociation constants were calculated. The relatively poor affinity of oxythiamine to the enzyme emphasizes the 4-amino group in the pyrimidine ring as one of the specificity requirements for thiamine pyrophosphokinase. Preliminary values for the apparent equilibrium coefficient of the thiamine pyrophosphokinase-catalyzed reaction, in terms of total species, has been approximated at several initial concentrations of reactants: e.g. K'eq,app = (see article) 9.66 - 10(-3) M; and [Th]initial - 1 - 10(-6) and 2 - 10(-6) M, respectively, where TDP, Th, t and eq represent thiamine diphosphate, thiamine, total concentration and equilibrium concentration, respectively.  相似文献   

16.
Using preparations of synaptosomes and subsynaptosomal fractions from the rat brain, we studied the localization of thiamine-binding protein (TBP) in the subcellular structures of the neurons. In addition, we studied the distribution in synaptosomes of two types of activity typical of TBP (thiamine triphosphatase and thiamine-binding activities), as well as the effects of factors destroying the plasma membrane of synaptosomes on binding of [14C]thiamine with the latter. We found that the thiamine-associated activity of TBP was the highest in fractions of the synaptic vesicles and plasma membranes. Hydrolysis of thiamine triphosphate was also most active in these structures. Our results allow us to conclude that TBP is localized mostly in the synaptic vesicles and plasma membranes of synaptosomes.  相似文献   

17.
Thiamine is an essential, positively charged (under physiologic conditions), water-soluble vitamin requiring transport into brain. Brain thiamine deficiency has been linked to neurodegenerative disease by subsequent impairment of thiamine-dependent enzymes used in brain glucose/energy metabolism. In this report, we evaluate brain uptake and efflux of [3H]thiamine using the in situ rat brain perfusion technique. To confirm brain distribution was not related to blood-brain barrier endothelial cell uptake, we compared parenchymal and cell distribution of [3H]thiamine using capillary depletion. Our work supports previous literature findings suggesting blood-brain barrier thiamine uptake is via a carrier-mediated transport mechanism, yet extends the literature by redefining the kinetics with more sensitive methodology. Significantly, [3H]thiamine brain accumulation was influenced by a considerable efflux rate. Evaluation of the efflux mechanism demonstrated increased stimulation by the presence of increased vascular thiamine. The influx transport mechanism and efflux rate were each comparable throughout brain regions despite documented differences in glucose and thiamine metabolism. The observation that [3H]thiamine blood-brain barrier influx and efflux is regionally homogenous may have significant relevance to neurodegenerative disease linked to thiamine deficiency.  相似文献   

18.
Thiamine metabolism in vivo was studied by intracerebroventricular injection of labeled thiamine in rat brain. Labeled thiamine was found to be rapidly converted to the phosphorylated thiamine esters. The distribution of the radioactive thiamine compounds was reached to steady state at 3 hr after injection: thiamine, thiamine monophosphate, thiamine pyrophosphate, and thiamine triphosphate were 8–12%, 12–14%, 72–74%, and 2–3%, respectively, in cerebral cortex. The presence of labeled thiamine triphosphate in the brain was further confirmed by the treatment with thiamine triphosphatase which had an absolute substrate specificity for thiamine triphosphate. These results suggest that thiamine triphosphate is synthesized in vivo in rat brain.  相似文献   

19.
We identified a strain carrying a recessive constitutive mutation (thi80-1) with an altered thiamine transport system, thiamine-repressible acid phosphatase, and several enzymes of thiamine synthesis from 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-beta-hydroxyethylthiazole. The mutant shows markedly reduced activity of thiamine pyrophosphokinase (EC 2.7.6.2) and high resistance to oxythiamine, a thiamine antagonist whose potency depends on thiamine pyrophosphokinase activity. The intracellular thiamine pyrophosphate content of the mutant cells grown with exogenous thiamine (2 x 10(-7) M) was found to be about half that of the wild-type strain under the same conditions. These results suggest that the utilization and synthesis of thiamine in Saccharomyces cerevisiae is controlled negatively by the intracellular thiamine pyrophosphate level.  相似文献   

20.
The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated under various stress conditions. In the present study, Zea mays seedlings were used as a model system to analyse for any relation between the plant response to abiotic stress and the properties of thiamine biosynthesis and activation. Conditions of drought, high salt, and oxidative stress were induced by polyethylene glycol, sodium chloride, and hydrogen peroxide, respectively. The expected increases in the abscisic acid levels and in the activities of antioxidant enzymes including catalase, ascorbate peroxidase, and glutathione reductase were found under each stress condition. The total thiamine compound content in the maize seedling leaves increased under each stress condition applied, with the strongest effects on these levels observed under the oxidative stress treatment. This increase was also found to be associated with changes in the relative distribution of free thiamine, thiamine monophosphate (TMP), and TDP. Surprisingly, the activity of the thiamine synthesizing enzyme, TMP synthase, responded poorly to abiotic stress, in contrast to the significant enhancement found for the activities of the TDP synthesizing enzyme, thiamine pyrophosphokinase, and a number of the TDP/TMP phosphatases. Finally, a moderate increase in the activity of transketolase, one of the major TDP-dependent enzymes, was detectable under conditions of salt and oxidative stress. These findings suggest a role of thiamine metabolism in the plant response to environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号