首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel serine/threonine protein kinase regulated by phorbol esters and diacylglycerol (named PKD) has been identified. PKD contains a cysteine-rich repeat sequence homologous to that seen in the regulatory domain of protein kinase C (PKC). A bacterially expressed NH2-terminal domain of PKD exhibited high affinity phorbol ester binding activity (Kd = 35 nM). Expression of PKD cDNA in COS cells conferred increased phorbol ester binding to intact cells. The catalytic domain of PKD contains all characteristic sequence motifs of serine protein kinases but shows only a low degree of sequence similarity to PKCs. The bacterially expressed catalytic domain of PKD efficiently phosphorylated the exogenous peptide substrate syntide-2 in serine but did not catalyse significant phosphorylation of a variety of other substrates utilised by PKCs and other major second messenger regulated kinases. PKD expressed in COS cells showed syntide-2 kinase activity that was stimulated by phorbol esters in the presence of phospholipids. We propose that PKD may be a novel component in the transduction of diacylglycerol and phorbol ester signals.  相似文献   

2.
Epidermal growth factor stimulates the activity of several cytosolic serine/threonine protein kinases in quiescent Swiss 3T3 cells. Two of these, which use myelin basic protein (MBP) as substrate, act as kinase kinases in that they are able to activate a separate peptide kinase activity in vitro by a mechanism involving protein phosphorylation. In this study, we have identified two activities from extracts of epidermal growth factor-treated cells that stimulate an ATP-dependent activation of both of the MBP kinases, derived in their inactive precursor forms from extracts of untreated cells. The resulting MBP kinase activities are stable to further purification and can be inactivated with either tyrosine or serine/threonine protein phosphatases and then reactivated to their original levels of activity. Thus, we propose that the in vitro activation involves protein phosphorylation, stimulated by the action of novel MBP kinase activating factors that represent intermediate components in a growth factor-stimulated kinase cascade.  相似文献   

3.
The c-raf kinase has been shown to be activated following stimulation of several tyrosine kinase growth factor receptors. We examined changes in c-raf following engagement of the T cell receptor for antigen (TCR), a stimulus which activates both a non-receptor tyrosine kinase and protein kinase C (PKC). We found that activation of the T-cell receptor on the T cell hybridoma 2B4 causes a rapid and stoichiometric hyperphosphorylation of c-raf and an increase in c-raf-associated kinase activity. Phosphoamino acid analysis showed that the phosphorylation was entirely on serine residues. High-resolution phosphopeptide mapping showed the appearance of a single major new phosphopeptide with TCR stimulation. That phosphopeptide was shown to comigrate with the major new phosphopeptide induced in response to phorbol ester. When cells were depleted of PKC by pretreatment with high concentrations of phorbol ester, TCR stimulation was no longer capable of inducing c-raf-associated kinase activity. To determine whether activation of the tyrosine kinase alone would activate c-raf, we examined the 2B4 variant cell line FL.8. In response to Thy-1 stimulation, these cells activate the tyrosine kinase but not protein kinase C due to a deficiency in TCR eta chain expression. We found that in contrast to Thy-1 stimulation of 2B4 cells, stimulation of FL.8 cells does not lead to the induction of c-raf-associated kinase activity, although phorbol ester activates the kinase to an equivalent degree in both cells. We conclude that T cell receptor activation of c-raf occurs via phosphorylation by the serine/threonine kinase PKC. Activation of c-raf through PKC represents a mechanism distinct from that reported for tyrosine kinase growth factor receptors.  相似文献   

4.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   

5.
Mitogenic stimulation of mammalian cells results in increased serine phosphorylation of ribosomal protein S6. Phorbol esters, which stimulate protein kinase C activity, can also increase S6 phosphorylation. In order to further investigate the role of protein kinase C in the activation S6 kinase, we studied the stimulation of an S6 kinase activity in response to phorbol ester and epinephrine in a renal epithelial cell line, Madin-Darby canine kidney cells (MDCK). In these cells, S6 phosphorylating activity in cytosolic extracts was increased following the addition of phorbol ester to the intact cells. S6 kinase and protein kinase C activities were measured in separate fractions prepared by DEAE-Sephacel fractionation of cytosolic extracts prepared from the same cells. The time course and dose-response curves for the effects of phorbol 12-myristate 13-acetate (PMA) on S6 kinase activity were similar to those for its effects on protein kinase C binding to the membrane fraction, indicating that S6 kinase activation was correlated with protein kinase C activation. Epinephrine, acting via alpha1-adrenergic receptors, also stimulated S6 kinase activity in MDCK cells; the magnitude of this effect was similar to that of PMA. However, epinephrine causes only a slight and transient association of protein kinase C with the membrane. The effect of epinephrine on S6 kinase activity, unlike that of PMA, was dependent on the presence of extracellular calcium. A23187, a calcium ionophore, could also stimulate S6 kinase activity. These results suggest that S6 kinase can be activated through more than one signaling pathway in MDCK cells. The properties of the PMA-stimulated S6 kinase were further investigated following partial purification of the enzyme. The S6 kinase was distinct from protein kinase C by several criteria. Noteably, the S6 kinase was highly specific for S6 as substrate. These results show that phorbol esters, acting through protein kinase C, stimulate the activity of a unique S6 kinase. This S6 kinase can also be activated through a signaling pathway that appears to be dependent on increased intracellular calcium.  相似文献   

6.
Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.  相似文献   

7.
PRAS40 binds to the mTORC1 (mammalian target of rapamycin complex 1) and is released in response to insulin. It has been suggested that this effect is due to 14-3-3 binding and leads to activation of mTORC1 signalling. In a similar manner to insulin, phorbol esters also activate mTORC1 signalling, in this case via PKC (protein kinase C) and ERK (extracellular-signal-regulated kinase). However, phorbol esters do not induce phosphorylation of PRAS40 at Thr(246), binding of 14-3-3 proteins to PRAS40 or its release from mTORC1. Mutation of Thr(246) to a serine residue permits phorbol esters to induce phosphorylation and binding to 14-3-3 proteins. Such phosphorylation is apparently mediated by RSKs (ribosomal S6 kinases), which lie downstream of ERK. However, although the PRAS40(T246S) mutant binds to 14-3-3 better than wild-type PRAS40, each inhibits mTORC1 signalling to a similar extent. Our results show that activation of mTORC1 signalling by phorbol esters does not require PRAS40 to be phosphorylated at Thr(246), bind to 14-3-3 or be released from mTORC1. It is conceivable that phorbol esters activate mTORC1 by a distinct mechanism not involving PRAS40. Indeed, our results suggest that PRAS40 may not actually be involved in controlling mTORC1, but rather be a downstream target of mTORC1 that is regulated in response only to specific stimuli, such as insulin.  相似文献   

8.
Insulin activation of protein kinase C: a reassessment   总被引:4,自引:0,他引:4  
Although insulin is known to activate several protein serine/threonine protein kinases, its ability to activate protein kinase C remains controversial. We reinvestigated this question, taking advantage of several technical advances such as the development of fibroblast cell lines that overexpress normal human insulin receptors, and the development of antibodies to and expression vectors for the myristoylated, alanine-rich C kinase substrate (MARCKS) protein, a major cellular substrate for protein kinase C. In HIR 3.5 cells, a mouse 3T3 cell derivative that expresses about 6 x 10(6) human insulin receptors/cell, insulin (70 nM for 10 min) stimulated phosphorylation of the MARCKS protein by approximately 2-fold (p less than 0.005). This phosphorylation was not further increased by different times of insulin exposure, different insulin concentrations, or longer periods of serum deprivation. The insulin stimulation represented about 14% of the response to phorbol 12-myristate 13-acetate and about 17% of the response to 10% fetal calf serum. No significant stimulation of MARCKS protein phosphorylation was seen in four other insulin-sensitive cell lines, in which insulin is known to activate other protein serine/threonine kinases: HIRC-B, BC3H-1, 3T3-L1 adipocytes, and H35 rat hepatoma cells made to stably express the MARCKS protein. In these four cell lines, serum and/or phorbol 12-myristate 13-acetate exerted a large stimulatory effect on MARCKS protein phosphorylation. We conclude that insulin may activate protein kinase C to a minor extent in certain cell types that vastly overexpress insulin receptors; however, we believe that this effect of insulin is unlikely to be of physiological importance.  相似文献   

9.
Protein kinase assays that use recombinant pp90rsk as a substrate were developed in an attempt to identify growth-regulated enzymes responsible for the phosphorylation and activation of pp90rsk S6 phosphotransferase activity. With this assay we have ientified a pp60v-src-, growth factor-, phorbol ester-, and vanadate-regulated serine/threonine protein kinase activity that is not related to two other cofactor-independent, growth-regulated protein kinases, pp70-S6 protein kinase and pp90rsk. The pp90rsk-protein kinase activity (referred to as rsk-kinase) is also not related to cofactor-dependent signal transducing protein kinases such as the cyclic AMP-dependent protein kinases, members of the protein kinase C family, or other Ca2(+)-dependent protein kinases. In vitro, partially purified rsk-kinase phosphorylates several of the sites (serine and threonine) that are phosphorylated in growth-stimulated cultured cells. A detailed examination of the mitogen-regulated activation kinetics of rsk-kinase and pp90rsk activities demonstrated that they are coordinately regulated. In addition, protein kinase C is not absolutely required for epidermal and fibroblast growth factor-stimulated activation of rsk-kinase, whereas, like pp90rsk, platelet-derived growth factor- and vanadate-stimulated rsk-kinase activity exhibits a greater dependence on protein kinase C-mediated signal transduction. The characterization and future purification of the rsk-kinase(s) will improve our understanding of the early signaling events regulating cell growth.  相似文献   

10.
The phenolic antioxidant 2,6-bis(1,1-dimethyl ethyl)-4-methylphenol (BHT) evokes a transient phosphorylation of two platelet proteins of Mr 20,000 and 47,000 that are well-known substrates of protein kinase C (PKC) and, similarly to phorbol esters, a slight but persistent phosphorylation of a protein of Mr 26,000. These effects are observed both in the presence and in the absence of extracellular calcium, but are abolished in the presence of the protein kinase C inhibitor staurosporine. The phosphorylation of the 47 kDa protein takes place mostly at the serine and, to a lesser extent, at threonine residues. BHT induces an increased binding of tritiated phorbol dibutyrate to platelets indicating a PKC translocation from cytosol to plasma membrane. Addition of BHT (20 microM) a few min prior to thrombin causes inhibition of both agonist-evoked protein phosphorylation and increase in the Ca2+ concentration, the latter inhibition being counteracted by staurosporine. The inhibitory effect lasts for several minutes even after removal of BHT from the cellular suspending medium. Similar results are obtained with nordihydroguaiaretic acid, whereas 2- and 3-tert-butyl-4-methoxyphenol (BHA) produce only slight effects. BHT activates the protein kinase C purified from pig brain in a concentration-dependent manner (up to 200 microM), whereas it does not affect the activity of other purified protein kinases such as type 1 and 2 casein kinases, type II A, II B and III tyrosine protein kinases from rat spleen and the catalytic subunit of cyclic AMP-dependent protein kinase. It is concluded that, similarly to diacylglycerols and phorbol esters, these phenolic antioxidants activate the protein kinase C, which in turn desensitizes platelets towards subsequent phospholipase C activation.  相似文献   

11.
The function of insulin receptor substrate-1 (IRS-1), a key molecule of insulin signaling, is modulated by phosphorylation at multiple serine/threonine residues. Phorbol ester stimulation of cells induces phosphorylation of two inhibitory serine residues in IRS-1, i.e. Ser-307 and Ser-318, suggesting that both sites may be targets of protein kinase C (PKC) isoforms. However, in an in vitro system using a broad spectrum of PKC isoforms (alpha, beta1, beta2, delta, epsilon, eta, mu), we detected only Ser-318, but not Ser-307 phosphorylation, suggesting that phorbol ester-induced phosphorylation of this site in intact cells requires additional signaling elements and serine kinases that link PKC activation to Ser-307 phosphorylation. As we have observed recently that the tyrosine phosphatase Shp2, a negative regulator of insulin signaling, is a substrate of PKC, we studied the role of Shp2 in this context. We found that phorbol ester-induced Ser-307 phosphorylation is reduced markedly in Shp2-deficient mouse embryonic fibroblasts (Shp2-/-) whereas Ser-318 phosphorylation is unaltered. The Ser-307 phosphorylation was rescued by transfection of mouse embryonic fibroblasts with wild-type Shp2 or with a phosphatase-inactive Shp2 mutant, respectively. In this cell model, tumor necrosis factor-alpha-induced Ser-307 phosphorylation as well depended on the presence of Shp2. Furthermore, Shp2-dependent phorbol ester effects on Ser-307 were blocked by wortmannin, rapamycin, and the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. This suggests an involvement of the phosphatidylinositol 3-kinase/mammalian target of rapamycin cascade and of JNK in this signaling pathway resulting in IRS-1 Ser-307 phosphorylation. Because the activation of these kinases does not depend on Shp2, it is concluded that the function of Shp2 is to direct these activated kinases to IRS-1.  相似文献   

12.
13.
Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.  相似文献   

14.
Tumor-promoting phorbol esters have been found to bind and activate phospholipid/Ca2+-dependent or C-kinase, and several of their effects, including proliferative responses in lymphocytes, have been assumed to be related to activity of this enzyme. However, phorbol esters have also recently been found to stimulate tyrosine phosphorylation in certain other cell types, and we therefore studied tyrosine kinase activity in normal and chronic lymphocytic leukemia (CLL) peripheral blood B lymphocytes stimulated with phorbol ester. High levels of tyrosine labeling were observed in unstimulated cells with major endogenous substrates of 75K, 66K, 43K, and 28K in Triton-soluble material, and of 56K to 61K in Triton-insoluble material; this profile was essentially similar in normal and CLL B cells. Treatment with phorbol ester for time periods varying from 20 min to 48 hr led to qualitative increases in tyrosine labeling of these phosphoproteins, as measured both in vitro and in intact cells "in vivo." Although the relative abundance of tyrosine phosphorylation as a percentage of total labeling was variable due to concomitant enhancement of serine and threonine phosphorylation, exogenous peptide substrate assays confirmed the increased tyrosine kinase activity quantitatively. Enhanced tyrosine phosphorylation was succeeded or accompanied in both normal and abnormal B cells by cellular activation, as judged by increased [3H]thymidine uptake, and terminal differentiation of CLL cells. These findings provide further evidence implicating tyrosine kinases in B lymphocyte activation.  相似文献   

15.
Treatment of quiescent human embryonic lung fibroblastic cells (TIG-3) with 10 nM epidermal growth factor (EGF) resulted in 4-6-fold activation of a protein kinase activity in cell extracts that phosphorylated microtubule-associated protein 2 (MAP2) on serine and threonine residues in vitro. The half-maximal activation of the kinase activity occurred within 5 min after EGF treatment, and the maximal level was attained at 15 min. Casein and histone were very poor substrates for this EGF-stimulated MAP2 kinase activity. The activation of the kinase activity persisted after brief dialysis. Interestingly, the EGF-stimulated MAP2 kinase activity was sensitive to micromolar concentrations of free Ca2+; it was inhibited 50% by 0.5 microM Ca2+ and almost totally inhibited by 2 microM Ca2+. The activated MAP2 kinase activity was recovered in flow-through fractions on phosphocellulose column chromatography, while kinase activities that phosphorylate 40 S ribosomal protein S6 (S6 kinase activities) were mostly retained on the column and eluted at 0.5 M NaCl. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, phorbol esters (12-O-tetradecanoylphorbol 13-acetate and phorbol 12,13-dibutyrate), and fresh fetal calf serum also induced activation of the MAP2 kinase in the quiescent TIG-3 cells. The activated MAP2 kinase activity in cells stimulated by platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor-I, insulin, 12-O-tetradecanoylphorbol 13-acetate, phorbol 12,13-dibutyrate, or fetal calf serum was almost completely inhibited by 2 microM Ca2+, like the EGF-stimulated kinase. In addition, MAP2 phosphorylated by the kinase activated by different stimuli gave very similar phosphopeptide mapping patterns. These results suggest that several growth factors, phorbol esters, and serum activate a common, Ca2+-inhibitable protein kinase which is distinct from S6 kinase in quiescent human fibroblasts.  相似文献   

16.
Choline acetyltransferase, the enzyme that synthesizes the transmitter acetylcholine in cholinergic neurons, is a substrate for protein kinase C. In the present study, we used mass spectrometry to identify serine 440 in recombinant human 69-kDa choline acetyltransferase as a protein kinase C phosphorylation site, and site-directed mutagenesis to determine that phosphorylation of this residue is involved in regulation of the enzyme's catalytic activity and binding to subcellular membranes. Incubation of HEK293 cells stably expressing wild-type 69-kDa choline acetyltransferase with the protein kinase C activator phorbol 12-myristate 13-acetate showed time- and dose-related increases in specific activity of the enzyme; in control and phorbol ester-treated cells, the enzyme was distributed predominantly in cytoplasm (about 88%) with the remainder (about 12%) bound to cellular membranes. Mutation of serine 440 to alanine resulted in localization of the enzyme entirely in cytoplasm, and this was unchanged by phorbol ester treatment. Furthermore, activation of mutant enzyme in phorbol ester-treated HEK293 cells was about 50% that observed for wild-type enzyme. Incubation of immunoaffinity purified wild-type and mutant choline acetyltransferase with protein kinase C under phosphorylating conditions led to incorporation of [(32)P]phosphate, with radiolabeling of mutant enzyme being about one-half that of wild-type, indicating that another residue is phosphorylated by protein kinase C. Acetylcholine synthesis in HEK293 cells expressing wild-type choline acetyltransferase, but not mutant enzyme, was increased by about 17% by phorbol ester treatment.  相似文献   

17.
Ethanol causes a transient activation of the phosphoinositide-specific phospholipase C in intact hepatocytes and mimics the action of receptor-mediated agonists [Hoek, Thomas, Rubin & Rubin (1987) J. Biol. Chem. 262, 682-691]. Preincubation of the hepatocytes with phorbol esters which activate protein kinase C prevented this effect of ethanol: phorbol ester treatment inhibited the ethanol-induced phosphorylase activation, the increase in intracellular free Ca2+ concentrations measured in quin 2-loaded hepatocytes, and the changes in concentrations of inositol phosphates, phosphoinositides and phosphatidic acid. Several lines of evidence indicate that these effects were mediated by protein kinase C. Phorbol esters acted in a concentration range where they activate protein kinase C; phorbol esters that do not activate protein kinase C were not effective in inhibiting the effects of ethanol. The permeant diacylglycerol oleoyl-acetylglycerol also inhibited the effects of ethanol, but other diacylglycerols were not effective in the intact cells. The inhibition of ethanol-induced Ca2+ mobilization by phorbol esters was prevented by preincubating the cells with the protein kinase C inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H7) and sphingosine. H7 also enhanced the Ca2+ mobilization induced by ethanol in cells that were not pretreated with phorbol esters, indicating that the transient nature of the ethanol-induced Ca2+ mobilization may be due to an activation of protein kinase C caused by the accumulation of diacylglycerol. These data support a model whereby ethanol activates the phosphoinositide-specific phospholipase C, possibly by affecting receptor-G-protein-phospholipase C interactions in the membrane.  相似文献   

18.
Treatment of bovine chromaffin cells with nicotinic agonists, phorbol esters, and growth factors increases protein kinase activity toward microtubule-associated protein-2 and myelin basic protein (MBP) in vitro. To characterize the kinases that are activated by these agents, we separated chromaffin cell proteins by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels into which MBP had been incorporated, allowed the proteins to renature, and then assayed MBP kinase activity by incubating the gels with [gamma-32P]ATP. Chromaffin cells contain a family of kinases that phosphorylate MBP in vitro. Two of these kinases, of M(r) 46,000 and 42,000 (PK46 and PK42), were activated by treatment of the cells with dimethylphenylpiperazinium (DMPP), phorbol 12,13-dibutyrate (PDBu), or insulin-like growth factor I (IGF-I). Activation of PK46 and PK42 by DMPP was dependent on extracellular Ca2+, whereas the effects of PDBu and IGF-I were Ca2+ independent. Down-regulation of protein kinase C by incubation of the cells with PDBu abolished the activation of PK46 and PK42 by DMPP, PDBu, and IGF-I. Staurosporine, a protein kinase C inhibitor, prevented the activation of PK46 and PK42 by DMPP and PDBu but did not block the activation of these kinases by IGF-I. Immunoblotting experiments with antiphosphotyrosine (anti-PTyr) antibodies demonstrated that agents that increased the kinase activities of PK46 and PK42 also increased the apparent PTyr content of M(r) 46,000 and 42,000 proteins. PK46 and PK42 comigrated with proteins that reacted with antibodies against extracellular signal-regulated kinases (ERKs). Thus, PK46 and PK42 appear to be the bovine homologues of ERK1 and ERK2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Nerve growth factor (NGF) binds to two structurally unrelated transmembrane proteins on the surface of PC-12 cells, a 75-kDa glycoprotein with a short cytoplasmic sequence, and the trk protooncogene (pp140c-trk), a protein tyrosine kinase activated by NGF. Immediately after binding to cells, NGF induces changes in serine/threonine phosphorylation of several proteins. We have explored the relative roles of these two NGF binding proteins in mediating the activation of two intracellular kinases that may be responsible for some of these phosphorylations. The raf-1 protooncogene is a serine/threonine kinase activated by several growth factors and oncogenic proteins. Treatment of PC-12 cells with NGF increases the serine and threonine phosphorylation of raf-1 in an anti-raf-1 immunoprecipitate kinase assay. This increased phosphorylation observed in vitro is dose-dependent and transient and is accompanied by the NGF-dependent shift in the mobility of immunoblotted raf-1 on SDS sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an effect thought to reflect phosphorylation. NGF-dependent activation of raf-1 is not dependent on protein kinase C, since prolonged exposure to phorbol esters under conditions that cause down-regulation of cellular protein kinase C activity has no effect on the NGF response. Expression of pp140c-trk in 3T3 fibroblasts (3T3-c-trk), as evidenced by cross-linking of 125I-NGF to the 140-kDa protein, permits the NGF-dependent activation of raf-1 kinase, detected in the immunoprecipitate kinase assay, anti-raf immunoblot shift on gel electrophoresis, and incorporation of [32P]orthophosphate into the raf-1 protein. The concentration dependence of raf-1 activation is identical in 3T3-c-trk and PC-12 cells, despite the absence of the 75-kDa NGF binding protein in 3T3-c-trk cells. NGF is without effect in untransfected 3T3 cells or in Chinese hamster ovary cells overexpressing p75, although raf-1 is present in these cells. Similarly, the NGF-dependent activation of mitogen-activated protein (MAP) kinase is detected in 3T3-c-trk cells, but not in untransfected 3T3 or Chinese hamster ovary cells overexpressing p75. As described for raf-1 activation, the NGF dose responses for MAP kinase activation in 3T3-c-trk and PC-12 cells are virtually superimposable. These data indicate that the activation of these two serine/threonine kinases by NGF is mediated solely by binding to and activating the pp140c-trk receptor.  相似文献   

20.
I Geffen  M Spiess 《FEBS letters》1992,305(3):209-212
Like virtually all endocytic receptors, the human asialoglycoprotein (ASGP) receptor is phosphorylated by protein kinase C at serine residues within the cytoplasmic domains of its two subunits H1 and H2. Activation of protein kinase C by phorbol esters results in hyperphosphorylation and in a concomitant net redistribution of receptors to intracellular compartments (down-regulation) in HepG2 cells. To test whether there is a causal relationship between receptor hyperphosphorylation and redistribution, we examined the effect of phorbol ester treatment on the ASGP receptor composed of either wild-type subunits or of mutant subunits lacking any cytoplasmic serine residues in transfected NIH3T3 fibroblast and COS-7 cells. Although the wild-type subunits were hyperphosphorylated in fibroblast cells, the distribution of neither the wild-type nor the mutant receptors was affected. In contrast, phorbol ester treatment of transfected COS-7 cells induced down-regulation of both wild-type and mutant receptors. These findings indicate that redistribution of the receptor is independent of its cytoplasmic serines and is not caused by receptor phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号