共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapaport D Auerbach W Naslavsky N Pasmanik-Chor M Galperin E Fein A Caplan S Joyner AL Horowitz M 《Traffic (Copenhagen, Denmark)》2006,7(1):52-60
EHD1 is a member of the EHD family that contains four mammalian homologs. Among the invertebrate orthologs are a single Drosophila and Caenorhabditis elegans proteins and two plant members. They all contain three modules, a N-terminal domain that contains nucleotide-binding motifs, a central coiled-coil domain involved in oligomerization and a C-terminal region that harbors the EH domain. Studies in C. elegans and EHD1 depletion by RNA interference in human cells have demonstrated that it regulates recycling of membrane proteins. We addressed the physiological role of EHD1 through its inactivation in the mouse. Ehd1 knockout mice were indistinguishable from normal mice, had a normal life span and showed no histological abnormalities. Analysis of transferrin uptake in Ehd1(-/-) embryonic fibroblasts demonstrated delayed recycling to the plasma membrane with accumulation of transferrin in the endocytic recycling compartment. Our results corroborate the established role of EHD1 in the exit of membrane proteins from recycling endosomes in vivo in a mouse model. 相似文献
2.
GS32/SNAP-29 is a SNAP-25-like SNARE and has been shown to interact with syntaxin 6. Using immobilized recombinant GS32, we have recovered EHD1 as a major GS32-interacting protein from total HeLa cell extracts. This interaction is mediated by the EH domain of EHD1 and the N-terminal NPF-containing 17-residue region of GS32. Co-immunoprecipitation suggests that GS32 could also interact with EHD1 in intact cells. When immobilized GST-EHD1 was used to fish out interacting proteins from total brain extracts, syndapin II was identified as a major interacting partner. Similar to the GS32-EHD1 interaction, syndapin II also interacts with the EH domain of EHD1 via its NPF repeat region. Interaction of endogenous EHD1 and syndapin II was also established by co-immunoprecipitation. Furthermore, interaction of GS32 and syndapin II with EHD1 was shown to be mutually exclusive, suggesting that EHD1 may regulate/participate in the functional pathways of both GS32 and syndapin II in a mutual exclusive manner. Opposing roles of GS32 and syndapin II in regulating the surface level of transferrin receptor (TfR) were observed. 相似文献
3.
Endocytic processes are mediated by multiple protein-protein interacting modules and regulated by phosphorylation and dephosphorylation.
The Eps15 homology domain containing protein 1 (EHD1) has been implicated in regulating recycling of proteins, internalized
both in clathrin-dependent and clathrin-independent endocytic pathways, from the recycling compartment to the plasma membrane.
EHD1 was found in a complex with clathrin, adaptor protein complex-2 (AP-2) and insulin-like growth factor-1 receptor (IGF-1R),
and was shown to interact with Rabenosyn-5, SNAP29, EHBP1 (EH domain binding protein 1) and syndapin I and II. In this study,
we show that EHD1, like the other human EHDs, undergoes serine-phosphorylation. Our results also indicate that EHD1 is a serum-inducible
serine-phosphoprotein and that PKC (protein kinase C) is one of its kinases. In addition, we show that inhibitors of clathrin-mediated
endocytosis decrease EHD1 phosphorylation, while inhibitors of caveolinmediated endocytosis do not affect EHD1 phosphorylation.
The results of experiments in which inhibitors of endocytosis were employed strongly suggest that EHD1 phosphorylation occurs
between early endosomes and the endocytic recycling compartment. 相似文献
4.
The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases. 相似文献
5.
EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval 总被引:1,自引:0,他引:1
Endosome-to-Golgi retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR) requires the function of the retromer complex. Retromer is localized to endosomes and comprises two distinct sub complexes: the vacuolar protein sorting 35/29/26 sub complex that binds cargo and the sorting nexin (SNX)1/2 sub complex that tubulates endosomal membranes. To identify up- or down-stream regulatory factors of retromer, a comparative proteomic strategy was employed. Protein profiles of endosomally enriched membranes, from either wild-type or retromer-deficient mouse cells, were compared to identify proteins with either elevated or reduced expression levels. Eps15 homology domain-containing protein-1 (EHD1) was identified in endosomally enriched membrane fractions from retromer-deficient cells and was found to be approximately threefold upregulated in the absence of retromer. EHD1 is localized to tubular and vesicular endosomes, partially colocalizes with retromer and is associated with retromer in vivo. Mutation of the nucleotide-binding P-loop of EHD1 results in a dominant-negative effect upon retromer localization and endosome-to-Golgi retrieval, while loss of EHD1 expression by RNA interference destabilizes SNX1-positive tubules and inhibits endosome-to-Golgi retrieval. The interaction between EHD1 and retromer and the requirement for EHD1 to stabilize SNX1-tubules establish EHD1 as a novel facilitating component of endosome-to-Golgi retrieval. 相似文献
6.
Plants are constantly being challenged by aspiring pathogens. In order to protect themselves, plants have developed numerous defense mechanisms that are either specific or non-specific to the pathogen. Pattern recognition receptors can trigger plant defense responses in response to specific ligands or patterns. EIX (ethylene-inducing xylanase) triggers a defense response via the LeEix2 receptor, while bacterial flagellin triggers plant innate immunity via the FLS2 receptor. Endocytosis has been suggested to be crucial for the process in both cases. Here we show that the EIX elicitor triggers internalization of the LeEix2 receptor. Treatment with endocytosis, actin or microtubule inhibitors greatly reduced the internalization of LeEix2. Additionally, we demonstrate that plant EHD2 binds to LeEix2 and is an important factor in its internalization and in regulation of the induction of defense responses such as the hypersensitive response, ethylene biosynthesis and induction of pathogenesis-related protein expression in the case of EIX/LeEix2 (an LRR receptor lacking a kinase domain), but does not appear to be involved in the FLS2 system (an LRR receptor possessing a kinase domain). Our results suggest that various endocytosis pathways are involved in the induction of plant defense responses. 相似文献
7.
Fabien Kieken Marko Jović Marco Tonelli Naava Naslavsky Steve Caplan Paul L. Sorgen 《Protein science : a publication of the Protein Society》2009,18(12):2471-2479
Eps15 homology (EH)‐domain containing proteins are regulators of endocytic membrane trafficking. EH‐domain binding to proteins containing the tripeptide NPF has been well characterized, but recent studies have shown that EH‐domains are also able to interact with ligands containing DPF or GPF motifs. We demonstrate that the three motifs interact in a similar way with the EH‐domain of EHD1, with the NPF motif having the highest affinity due to the presence of an intermolecular hydrogen bond. The weaker affinity for the DPF and GPF motifs suggests that if complex formation occurs in vivo, they may require high ligand concentrations, the presence of successive motifs and/or specific flanking residues. 相似文献
8.
Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3 总被引:3,自引:2,他引:3 下载免费PDF全文
Roland JT Kenworthy AK Peranen J Caplan S Goldenring JR 《Molecular biology of the cell》2007,18(8):2828-2837
Cells use multiple pathways to internalize and recycle cell surface components. Although Rab11a and Myosin Vb are involved in the recycling of proteins internalized by clathrin-mediated endocytosis, Rab8a has been implicated in nonclathrin-dependent endocytosis and recycling. By yeast two-hybrid assays, we have now demonstrated that Myosin Vb can interact with Rab8a, but not Rab8b. We have confirmed the interaction of Myosin Vb with Rab11a and Rab8a in vivo by using fluorescent resonant energy transfer techniques. Rab8a and Myosin Vb colocalize to a tubular network containing EHD1 and EHD3, which does not contain Rab11a. Myosin Vb tail can cause the accumulation of both Rab11a and Rab8a in collapsed membrane cisternae, whereas dominant-negative Rab11-FIP2(129-512) selectively accumulates Rab11a but not Rab8a. Additionally, dynamic live cell imaging demonstrates distinct pathways for Rab11a and Rab8a vesicle trafficking. These findings indicate that Rab8a and Rab11a define different recycling pathways that both use Myosin Vb. 相似文献
9.
Sgambato-Faure V Xiong Y Berke JD Hyman SE Strehler EE 《Biochemical and biophysical research communications》2006,343(2):630-637
The Homer family of scaffold proteins couples NMDA receptors to metabotropic glutamate receptors and links extracellular signals to calcium release from intracellular stores. Ania-3 is a member of the Homer family and is rapidly inducible in brain in response to diverse stimuli. Here, we report the identification of the plasma membrane Ca2+ ATPase (PMCA) as a novel Ania-3/Homer-associated protein. Ania-3/Homer interacts with the b-splice forms of all PMCAs (PMCA1b, 2b, 3b, and 4b) via their PDZ domain-binding COOH-terminal tail. Ectopically expressed Ania-3 colocalized with the PMCA at the plasma membrane of polarized MDCK epithelial cells, and endogenous Ania-3/Homer and PMCA2 are co-expressed in the soma and dendrites of primary rat hippocampal neurons. The interaction between Ania-3/Homer and PMCAs may represent a novel mechanism by which local calcium signaling and hence synaptic function can be modulated in neurons. 相似文献
10.
Lu G Chen J Espinoza LA Garfield S Toshiyuki S Akiko H Huppler A Wang QJ 《Cellular signalling》2007,19(4):867-879
Protein kinase D localizes in the Golgi and regulates protein transport from the Golgi to the plasma membrane. In the present study, we found that PKD3, a novel member of the PKD family, and its fluorescent protein fusions localized in the Golgi and in the vesicular structures that are in part marked by endosome markers. Fluorescent recovery after photobleaching (FRAP) showed that the PKD3-associated vesicular structures were constantly forming and dissolving, reflecting active subcellular structures. FRAP on plasma membrane-located PKD3 indicated a slower recovery of PKD3 fluorescent signal compared to those of PKC isoforms, implying a different targeting mechanism at the plasma membrane. VAMP2, the vesicle-localized v-SNARE, was later identified as a novel binding partner of PKD3 through yeast two-hybrid screening. PKD3 directly interacted with VAMP2 in vitro and in vivo, and colocalized in part with VAMP2 vesicles in cells. PKD3 did not phosphorylate VAMP-GFP and the purified GST-VAMP2 protein in in vitro phosphorylation assays. Rather, PKD3 was found to promote the recruitment of VAMP2 vesicles to the plasma membrane in response to PMA, while the kinase dead PKD3 abolished this effect. Thus, the kinase activity of PKD3 was required for PMA-induced plasma membrane trafficking of VAMP2. In summary, our findings suggest that PKD3 localizes to vesicular structures that are part of the endocytic compartment. The vesicular distribution may be attributed in part to the direct interaction between PKD3 and vesicle-associated membrane protein VAMP2, through which PKD3 may regulate VAMP2 vesicle trafficking by facilitating its recruitment to the target membrane. 相似文献
11.
Endocytosis is a conserved process across species in which cell surface receptors and lipids are internalized from the plasma membrane. Once internalized, receptors can either be degraded or be recycled back to the plasma membrane. A variety of small GTP-binding proteins regulate receptor recycling. Despite our familiarity with many of the key regulatory proteins involved in this process, our understanding of the mode by which these proteins co-operate and the sequential manner in which they function remains limited. In this study, we identify two GTP-binding proteins as interaction partners of the endocytic regulatory protein molecule interacting with casl-like protein 1 (MICAL)-L1. First, we demonstrate that Rab35 is a MICAL-L1-binding partner in vivo. Over-expression of active Rab35 impairs the recruitment of MICAL-L1 to tubular recycling endosomes, whereas Rab35 depletion promotes enhanced MICAL-L1 localization to these structures. Moreover, we demonstrate that Arf6 forms a complex with MICAL-L1 and plays a role in its recruitment to tubular endosomes. Overall, our data suggest a model in which Rab35 is a critical upstream regulator of MICAL-L1 and Arf6, while both MICAL-L1 and Arf6 regulate Rab8a function. 相似文献
12.
The four Eps15 homology (EH) domain-containing proteins, EHD1-EHD4, have recently been ascribed roles in the regulation of the recycling of distinct receptor molecules and are often found associated with tubular structures. Here, we report the analysis of all four EHD proteins with regard to tissue distribution, intracellular localization and lipid binding properties. Specific antibodies reveal distinct expression profiles for the individual proteins in tissues and at intracellular locations, where they potentially interact with specific phospholipids. Moreover, EHD proteins colocalize with vesicular and tubular structures, implying roles in transport processes and cytoskeletal dynamics. Protein variants carrying mutations in the N-terminal nucleotide-binding P-loop region are no longer associated with phospholipids or membrane compartments, while deletion of the C-terminal EH domain affects targeting to tubular structures. All EHD proteins are able to bind to phospholipids, but localizations differ for each protein. 相似文献
13.
Posey AD Pytel P Gardikiotes K Demonbreun AR Rainey M George M Band H McNally EM 《The Journal of biological chemistry》2011,286(9):7379-7388
The mammalian ferlins are calcium-sensing, C2 domain-containing proteins involved in vesicle trafficking. Myoferlin and dysferlin regulate myoblast fusion and muscle membrane resealing, respectively. Correspondingly, myoferlin is most highly expressed in singly nucleated myoblasts, whereas dysferlin expression is increased in mature, multinucleated myotubes. Myoferlin also mediates endocytic recycling and participates in trafficking the insulin-like growth factor receptor. We have now characterized a novel member of the ferlin family, Fer1L5, because of its high homology to dysferlin and myoferlin. We found that Fer1L5 protein is expressed in small myotubes that contain only two to four nuclei. We also found that Fer1L5 protein binds directly to the endocytic recycling proteins EHD1 and EHD2 and that the second C2 domain in Fer1L5 mediates this interaction. Reduction of EHD1 and/or EHD2 inhibits myoblast fusion, and EHD2 is required for normal translocation of Fer1L5 to the plasma membrane. The characterization of Fer1L5 and its interaction with EHD1 and EHD2 underscores the complex requirement of ferlin proteins and mediators of endocytic recycling for membrane trafficking events during myotube formation. 相似文献
14.
15.
We report here detection of novel intracellular clathrin-coated structures revealed by continuous high-speed imaging of cells expressing green fluorescent protein fusion proteins. These structures, which we operationally term 'gyrating clathrin' (G-clathrin), are characterized by localized but extremely rapid movement, leading to the hypothesis that they are coated buds on waving membrane tubules. G-clathrin structures have structurally and functionally distinct features. They lack detectable adaptor proteins AP-1 and AP-2 but contain GGA1 [Golgi-localized, gamma-ear-containing, Arf (ADP-ribosylation factor)-binding protein] as well as the cation-dependent mannose-6-phosphate receptor. While they accumulate internalized transferrin (Tf), they do not contain detectable levels of cargos targeted for the late endosome/lysosome pathway such as EGF and dextran. Pulse-chase studies indicate that Tf appears in G-clathrin structures in the cell periphery after sorting endosomes (SEs), but before filling of the perinuclear endocytic recycling compartment. Furthermore, the inhibitors LY294002 and wortmannin, which inhibit direct recycling of Tf from SEs to the plasma membrane, also block its appearance in G-clathrin. These observations suggest that peripheral G-clathrin contributes to rapid recycling, a kinetically defined compartment that has largely eluded structural identification. More generally, the rapid continuous live cell imaging reported here reveals new aspects of membrane trafficking. 相似文献
16.
Cui Ye Zhaoshuai Wang Wei Lu Yinan Wei 《Protein science : a publication of the Protein Society》2014,23(7):897-905
The folding of a multi‐domain trimeric α‐helical membrane protein, Escherichia coli inner membrane protein AcrB, was investigated. AcrB contains both a transmembrane domain and a large periplasmic domain. Protein unfolding in sodium dodecyl sulfate (SDS) and urea was monitored using the intrinsic fluorescence and circular dichroism spectroscopy. The SDS denaturation curve displayed a sigmoidal profile, which could be fitted with a two‐state unfolding model. To investigate the unfolding of separate domains, a triple mutant was created, in which all three Trp residues in the transmembrane domain were replaced with Phe. The SDS unfolding profile of the mutant was comparable to that of the wild type AcrB, suggesting that the observed signal change was largely originated from the unfolding of the soluble domain. Strengthening of trimer association through the introduction of an inter‐subunit disulfide bond had little effect on the unfolding profile, suggesting that trimer dissociation was not the rate‐limiting step in unfolding monitored by fluorescence emission. Under our experimental condition, AcrB unfolding was not reversible. Furthermore, we experimented with the refolding of a monomeric mutant, AcrBΔloop, from the SDS unfolded state. The CD spectrum of the refolded AcrBΔloop superimposed well onto the spectra of the original folded protein, while the fluorescence spectrum was not fully recovered. In summary, our results suggested that the unfolding of the trimeric AcrB started with a local structural rearrangement. While the refolding of secondary structure in individual monomers could be achieved, the re‐association of the trimer might be the limiting factor to obtain folded wild‐type AcrB. 相似文献
17.
McKenzie JE Raisley B Zhou X Naslavsky N Taguchi T Caplan S Sheff D 《Traffic (Copenhagen, Denmark)》2012,13(8):1140-1159
Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and endoplasmic reticulum (ER). To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes (EE), recycling endosomes, late endosomes and lysosomes. All cargos pass through EE, but may take different routes to the Golgi. Retromer-dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer-dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-mannose-6-phosphate receptor (CI-M6PR), which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CI-M6PR was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the EE, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer-dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. 相似文献
18.
Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1?WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1. 相似文献
19.
Martina JA Bonangelino CJ Aguilar RC Bonifacino JS 《The Journal of cell biology》2001,153(5):1111-1120
Endocytosis of cell surface proteins is mediated by a complex molecular machinery that assembles on the inner surface of the plasma membrane. Here, we report the identification of two ubiquitously expressed human proteins, stonin 1 and stonin 2, related to components of the endocytic machinery. The human stonins are homologous to the Drosophila melanogaster stoned B protein and exhibit a modular structure consisting of an NH(2)-terminal proline-rich domain, a central region of homology specific to the stonins, and a COOH-terminal region homologous to the mu subunits of adaptor protein (AP) complexes. Stonin 2, but not stonin 1, interacts with the endocytic machinery proteins Eps15, Eps15R, and intersectin 1. These interactions occur via two NPF motifs in the proline-rich domain of stonin 2 and Eps15 homology domains of Eps15, Eps15R, and intersectin 1. Stonin 2 also interacts indirectly with the adaptor protein complex, AP-2. In addition, stonin 2 binds to the C2B domains of synaptotagmins I and II. Overexpression of GFP-stonin 2 interferes with recruitment of AP-2 to the plasma membrane and impairs internalization of the transferrin, epidermal growth factor, and low density lipoprotein receptors. These observations suggest that stonin 2 is a novel component of the general endocytic machinery. 相似文献