首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
The effects of drugs interacting with the GABAA/benzodiazepine chloride ionophore receptor complex (GABAA/BDZ-RC) on the anticonflict and biochemical effects observed after intracerebroventricular (i.c.v.) administration of 5,7-dihydroxytryptamine (5,7-DHT; 450 micrograms -14 days) were investigated in the rat using a modified Vogel's drinking conflict test. The GABAergic antagonistic drugs bicuculline, picrotoxin and Ro 15-4513 all counteracted the 5,7-DHT induced anxiolytic-like action in doses that did not alter the behavior per se, whereas flumazenil was ineffective in this respect. Also i.c.v. administration of 5-HT antagonized the 5,7-DHT induced anticonflict effect. Furthermore, 5,7-DHT-lesioned animals appeared more sensitive to the anticonflict effects of diazepam than sham-lesioned controls. The 5,7-DHT treatment produced marked depletions of 5-HT in the limbic system (80-90%) and hippocampus (90-95%), and an increase in the 5-HIAA/5-HT quotient in hippocampus. The effects on the levels of noradrenaline were comparatively small. The doses of bicuculline and picrotoxin antagonizing the 5,7-DHT induced anticonflict effect did not uniformly influence 5-HT levels or 5-HIAA/5-HT quotients. It is suggested that the anxiolytic-like effect observed in 5,7-DHT-lesioned rats in Vogel's drinking conflict test involves enhanced transmission at the GABAA/BDZ-RC.  相似文献   

2.
The effects of chronic (14 day) administration of the tricyclic antidepressant imipramine, the serotonin-2 (5-HT2) antagonist ketanserin, and the serotonin agonist quipazine on 5-HT2 receptor binding parameters and 5-HT2-mediated behavior were examined in rats with or without prior serotonergic denervation [via 5,7-dihydroxytryptamine (5,7-DHT)] or noradrenergic denervation [via N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)]. Chronic administration of imipramine, ketanserin, or quipazine produced a marked reduction in the number of 5-HT2 binding sites which was accompanied by reductions in the 5-HT2-mediated quipazine-induced head shake response. In animals receiving DSP4 or 5,7-DHT lesions and continuous vehicle treatment, beta-adrenergic receptor binding sites were significantly up-regulated while 5-HT2 receptor binding sites did not change. Imipramine normalized the lesion-induced increases in beta-adrenergic binding observed in DSP4 and 5,7-DHT-lesioned rats but failed to down-regulate beta-adrenergic binding sites below non-lesioned control levels. Chronic imipramine, ketanserin, and quipazine reduced quipazine-induced head shakes and down-regulated 5-HT2 binding sites in rats with noradrenergic denervation. While imipramine, ketanserin, and quipazine all down-regulated 5-HT2 binding sites in animals with serotonergic denervation, only imipramine's ability to reduce quipazine-induced head shakes was attenuated in 5,7-DHT-lesioned rats. The present results suggest that imipramine-induced down-regulation of 5-HT2 receptors may not involve presynaptic 5-HT mechanisms, and imipramine-induced alterations in 5-HT2 sensitivity as reflected in the quipazine-induced head shake may, in part, be influenced by beta-adrenergic receptors.  相似文献   

3.
The effect of continuous treatment with the selective 5-HT1A agonist gepirone upon 5-HT2-mediated behavior and cortical 5-HT2 receptor binding sites was examined in naive rats or rats receiving noradrenergic (DSP4) or serotonergic (5,7-DHT) lesions. Continuous administration of gepirone in non-lesioned rats for 3, 7, or 14 days enhanced the head shake response to the 5-HT agonist quipazine. This enhancement of 5-HT2-mediated behavior occurred despite concomitant down-regulation of cortical 5-HT2 binding sites. However, 28 days of gepirone administration significantly reduced behavioral responsiveness to quipazine. The gepirone-induced facilitation of 5-HT2-mediated behavior observed after 7 days of continuous treatment was blocked in both DSP4 and 5,7-DHT-lesioned rats. However, both noradrenergic and serotonergic denervation failed to modify the down-regulation of 5-HT2 receptor binding sites produced by continuous gepirone administration. These results suggest that the curious dissociation of behavioral and biochemical indices of 5-HT2 receptor function produced by continuous gepirone treatment may be the result of a dual yet separate action of the drug on central presynaptic noradrenergic and serotonergic mechanisms and postsynaptic 5-HT receptors. Furthermore, the postsynaptic action of gepirone which reduces the maximal number of cortical 5-HT2 receptor binding sites may be the result of gepirone's agonist action at postsynaptic 5-HT1A receptors.  相似文献   

4.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

5.
The cricket, Gryllus bimaculatus, shows a rhythm reversal from diurnal to nocturnal in about a week after the imaginal molt. In the present study, we investigated the role of serotonin (5-HT) in the rhythm reversal. The 5-HT content in the brain measured by HPLC equipped with an electrochemical detector gradually increased after the imaginal molt, and in fully nocturnal adults it was about 2 times of nymphal level. We then examined the effects of 5,7-dihydroxytryptamine (5,7-DHT), a selective neurotoxine to serotonergic neurons, on the locomotor rhythm. In most animals with 5,7-DHT (25 muM or 250 muM, 32.2 nl) injected into the brain, daytime activity significantly increased even after the rhythm reversal, while nighttime activity was not significantly affected, forming rather diurnal pattern. The serotonin content in the brain of animals injected with 250 muM 5,7-DHT was reduced by about 30%. On the basis of these results, possible involvement of 5-HT in the neural mechanism controlling the locomotor rhythm is discussed.  相似文献   

6.
We have earlier presented data indicating that the anxiolytic-like effect obtained in rats after depletion of brain 5-HT by means of PCPA or 5,7-DHT treatment is indirect and appears to involve the GABAA/benzodiazepine chloride ionophore receptor complex (GABAA/BDZ-RC), and that it is abolished by adrenalectomy. In the present series of experiments we have therefore investigated the 36Cl(-)-uptake in rat synaptoneurosomal preparations of central cortices from 5,7-DHT- and SHAM-lesioned animals. The GABA as well as the 3 alpha,5 alpha-tetrahydrodeoxycorticosterone (THDOC) induced picrotoxin-sensitive increase in 36Cl(-)-uptake was significantly lower than that observed in the SHAM-lesioned animals, indicating that the 5,7-DHT lesion has rendered the GABAA/BDZ-RC subsensitive to two of its tentative endogenous ligands. This effect of the 5,7-DHT lesion on the function on the GABAA/BDZ-RC was reversed by adrenalectomy, indicating that an intact adrenocortical function is required for the development of GABAA/BDZ-RC subsensitivity in 5,7-DHT-lesioned rats. A tentative conclusion of these findings is that the 5,7-DHT lesion induces an increase in release of GABA and/or barbiturate-like steroids and that this increase is reversed by adrenalectomy. The findings from these in vitro studies parallel those from our previous behavioral experiments and provide further support for the notion that a decreased serotonergic influence in the central nervous system may, possibly via the adrenocortical system, enhance the function of the GABAA/BDZ-RC.  相似文献   

7.
The present study investigated the involvement of amygdala noradrenergic (NE) and serotonergic (5-HT) systems in memory storage processing. Rats bearing chronic cannulae in the amygdala were trained on a one-trial inhibitory avoidance task and tested for retention 24 hrs later. Five days prior to training, rats received intra-amygdala infusion of vehicle or various doses of N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4)-a NE-specific neurotoxin when given peripherally. Results showed that pretraining intra-amygdala infusion of 10.0 micrograms or 30.0 micrograms of DSP-4 impaired retention. Further, 30.0 micrograms of DSP-4 also abolished the memory enhancing effect of epinephrine (E) injected peripherally. However, local infusion of DSP-4 depleted not only NE but also 5-HT and DA substantially. Subsequent experiments found that the retention deficit induced by 30.0 micrograms of DSP-4 could be ameliorated by 0.2 microgram NE but not by 5-HT at a wide range of doses infused into the amygdala shortly after training, which ascribed the deficit to depletion of NE. After protecting the 5-HT terminals by a pretreatment of fluoxetine (15.0 mg/kg), pretraining intra-amygdala infusion of 30.0 micrograms DSP-4 shifted the memory-enhancing dose of E from 0.1 mg/kg to 1.0 mg/kg. In contrast, pretraining intra-amygdala infusion of 15.0 micrograms 5,7-dihydroxytryptamine (5,7-DHT) or DSP-4 with a pretreatment of desipramine (DMI, 25.0 mg/kgx2) to protect NE terminals failed to impair retention or attenuate the memory enhancing effect of 0.1 mg/kg E injected peripherally. These findings, taken together, suggest that the memory modulatory effect of peripheral E involved, at least partially, the amygdala NE system.  相似文献   

8.
目的:于中脑正中中缝核局部微量注射5,7-二羟色胺(5,7-DHT),探讨5-羟色胺(5-HT)与癫痫的关系及匹罗卡品(PILO)致痫大鼠学习记忆改变的可能机制。方法:成年SD大鼠随机分为PILO组、PILO+5,7-DHT组、空白对照组三组,然后根据是否出现癫痫持续状态(SE)再将PILO组分成:PILO+SE组和PILO-SE组两亚组;利用视频脑电图观察大鼠癫痫发作及皮层脑电变化;运用Morris水迷宫测评大鼠空间学习记忆水平;最后运用免疫组化法观察大鼠中缝核5-HT能神经元。结果:大鼠予以5,7-DHT(PILO+5,7-DHT组)处理后造模成功率、死亡率及慢性期自发性发作频率均增高;与空白组比较PILO+SE组中缝核5-HT能神经元数目有所下降(P<0.05),而PILO+5,7-DHT组下降更明显(P<0.01);与空白组比较PILO+SE组平均逃避潜伏期延长、穿越平台次数减少、原平台象限停留时间缩短(P<0.05),而与PILO+SE组比较PILO+5,7-DHT组变化不明显。结论:脑内5-HT水平的降低容易诱发癫痫发作,尚不能认为癫痫大鼠合并认知功能障碍与脑内5-HT水平下降有关。  相似文献   

9.
Rats received a unilateral lesion of the nucleus basalis magnocellularis (NBM) by infusion of ibotenic acid. In addition, the dorsal raphe nucleus was lesioned by infusion of 5,7-dihydroxytryptamine (5,7-DHT). The release of acetylcholine (ACh), choline, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) was measured in the frontal neocortex by means of microdialysis. Lesions of the NBM, but not the raphe nucleus, reduced the release of ACh significantly (–47%). The release of 5-HT and 5-HIAA was reduced by raphe lesions (–44% and –79%), but not by NBM lesions. In no case did the combined lesion affect neurotransmitter release more than a single lesion. These results suggest that serotonergic projections from the dorsal raphe nucleus are not involved in tonic inhibition of ACh release in the neocortex.  相似文献   

10.
Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 5,7-dihydroxytryptamine (5,7-DHT) on striatal levels of dopamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites, as well as on locomotor activity were investigated in C57BL/6 mice. The results showed that MPTP significantly increased locomotor activity and decreased striatal DA levels. However, injection of the serotonergic neurotoxin 5,7-DHT in the striatum, either alone or following high doses of MPTP, significantly decreased locomotor activity, and concomitantly decreased striatal levels of 5-HT and 5-HIAA. This study suggests that the increased locomotor activity may be due to increased striatal serotonergic activity which overcompensates for the DA deficiency. The locomotor hypoactivity, induced by 5,7-DHT, might be due to the decreased striatal levels of 5-HT and 5-HIAA.  相似文献   

11.
Dexfenfluramine (dF) and dexnorfenfluramine (dNF), its metabolite, are anorectic agents that release serotonin (5-HT) and may have a direct postsynaptic action. The effects on the anorectic effects of dF and dNF of either acute (p-chlorophenylalanine, PCPA) or chronic (5,7-dihydroxytryptamine, 5,7-DHT) brain 5-HT depletions were studied in rats and compared with the actions of a 5-HT uptake inhibitor (fluoxetine) and 5-HT(1B/2C) receptor agonists [1-(3-trifluoromethyl-phenyl)-piperazine and 1-(3-chlorophenyl) piperazine]. The anorexia caused by these agonists was enhanced in rats with 5,7-DHT lesions, possibly a result of receptor supersensitivity. In contrast, fluoxetine anorexia was somewhat reduced in one study and was unchanged in a second. Both dF and dNF anorexias were enhanced in rats with 5,7-DHT lesions. In contrast, the anorectic effects of either dF or dNF were unchanged in PCPA-treated rats relative to controls. Compared with controls, 5, 7-DHT-lesion rats showed greatly increased dF- and dNF-induced Fos-like immunoreactivity (ir) in the paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei, and in the median preoptic area (MnPO), but were similar to controls in most other areas. PCPA pretreatment increased dF- and dNF-induced Fos-ir in the PVN, SON, and MnPO. In controls, equianorectic doses of dF and dNF induced Fos-ir in similar brain regions, but dNF produced relatively larger effects than dF in SON, PVN, and MnPO. The data are discussed in terms of multiple pathways in the anorectic actions of dF and dNF.  相似文献   

12.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

13.
To clarify the therapeutic effects of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH(4)) on the abnormal behaviors induced by neonatal 5,7-dihydroxytryptamine (5,7-DHT, 100 microg; i.c.v.) treatment in immature rats, 6R-BH(4) (10-40 mg/kg) was administered intraperitoneally from 22nd to 28th days or only once on the 28th day. The locomotion activities decreased dramatically in 5,7-DHT-treated rats (p<0.01; as compared to controls) on the 28th day. The reduced locomotion was recovered dose-dependently by repeated administration of 6R-BH(4), whereas it was not altered after a single injection of 6R-BH(4). In addition, repeated administration of 6R-BH(4) significantly facilitated 5-HT turnover ratio (5-HIAA/5-HT) in the striatum, cerebral cortex, and cerebellum. These findings suggest that the behavioral restoration by 6R-BH(4) might be due to the enhancement of 5-HT turnover by accumulated but not a single dose of 6R-BH(4).  相似文献   

14.
In 62 male Wistar rats the influence was studied of the transplanted embryonal tissue of raphe nuclei (NR) on the mechanisms of compensation of disturbances of exploratory activity, sensory attention, learning and emotional reactivity induced by neonatal injection of 5,7-DHT. In histochemical studies by Falk-Hillarp method the presence of yellow fluorescence confirmed the specificity of transplanted 5-HT neurones. It is found that NR transplantation causes in animals after 3 months recovery of orienting reaction to sensory stimuli, reduces rats reactivity in the open field, restores the ability to discrimination of emotionally positive influence, disturbed by neonatal injection of 5,7-DHT. The obtained data show the possibility of compensation of behaviour disturbances caused by chronic deprivation of 5-HT system activity by transplantation in the neocortex parenchyma of the embryonal tissue, containing serotoninergic neurones.  相似文献   

15.
Summary In an attempt to determine the conditions which permit central 5-HT neurons to respond to a chemical injury of their axons by sprouting and regeneration, the pattern and time-course of recovery of 5-HT concentrations and regrowth of bulbospinal 5-HT axons were evaluated in rats subjected to intraventricular treatment with either 75 g 5,6- or 150 g 5,7-DHT. While 5,6-DHT treatment is followed by a significant recovery of 5-HT concentrations in the telodiencephalon, brainstem and upper part of the spinal cord within 3 months, there is no significant restoration of the severely depleted 5-HT levels in the telodiencephalon and spinal cord, and only limited recovery in 5-HT content of the brainstem preparation after 5,7-DHT.These differences conform to the observation of widespread and effective regrowth and regeneration of the bulbospinal 5-HT neurons in the 5,6-DHT treated lower brainstem and upper spinal cord but restricted and localized sprouting efforts in the 5,7-DHT treated lower medulla oblongata. This could be explained by a cell body near lesion of the non-terminal indoleamine axons by 5,7-DHT which results in a late retrograde, irreversible degeneration of most of the indoleamine pericarya from group B1 and many of group B3.It is concluded that the preservation of a critical length of the main axon and part of its collaterals is necessary for the neuron's survival, and that the individual pattern of the neuropil architecture of brain centres which are invaded by the axonal sprouts may significantly influence their growth characteristics and thus either favour or impede their chance to reestablish connections with their original effector. Aberrant, localized, intense sprouting of drug-damaged axons may in itself reflect the need of the neuron—deprived of most of its axonal tree—to reestablish its original total axonal length by multiple branching.Supported by grants from the Deutsche Forschungsgemeinschaft. The authors are indebted to Rolf Franck for his technical assistance.Supported by grants from the Swedish Medical Research Council (No. 04 X-3874 and 04 X-56).  相似文献   

16.
Systemic administration of parachlorophenylalanine (PCPA, 100 mg/kg sc on alternate days X two times), a blocker of serotonin (5-HT) synthesis, considerably decreased brain 5-HT and plasma prolactin (PRL) levels in young male rats. Intraventricular (IVT) administration of 5,7-dihydroxytryptamine (5,7-DHT, 200 mug/20 mul), a neurotoxic drug which destroys 5-HT nerve terminals, induced, 3, 12, and 30 days after treatment, a marked depletion of brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) and considerably reduced plasma PRL levels at each time interval. Feeding of rat for up to 4 days with a tryptophan (TP)-deficient diet, caused a depletion of brain 5-HT and 5-HIAA contents and did not modify plasma PRL levels. Addition of TP (2 g/kg of diet) to the TP-deficient diet resulted in increased brain 5-HT and 5-HIAA contents and significantly increased PRL levels. These data provide evidence for the role of the 5-HT system in the maintenance of tonic PRL secretion.  相似文献   

17.
J L Waddington  T J Crow 《Life sciences》1979,25(15):1307-1314
Rats with unilateral 5,7-DHT lesions, but not 5,6-DHT lesions, showed rotational responses to 5-HTergic drugs (5MeODMT and fenfluramine) that were qualitatively similar to those induced by DAergic drugs (apomorphine and amphetamine) after 6-OHDA lesions. However, 5,7-DHT-lesioned rats also themselves showed rotational responses to DAergic drugs. The merits and limitations of a unilateral 5,7-DHT-lesioned rotating rat model for studying 5-HTergic function are discussed. It is suggested that 5-HT and DA may function in a co-operative manner in the striatum. These findings may be important for the rational pharmacotherapy of Parkinson's disease in which 5-HT as well as DA has been shown to be substantially depleted.  相似文献   

18.
We have recently reported that the anxiolytic-like effect observed in rats severely depleted of brain serotonin (5-HT) by means of 5,7-DHT is indirect and probably involves the GABA(A)/benzodiazepine chloride ionophore receptor complex (GABAA/BDZ-RC). One tentative explanation for this effect considered the involvement of corticosteroids. In the present series of experiments we have therefore investigated the effect of adrenalectomy (ADX) on the 5,7-DHT-induced anxiolytic-like effect displayed by rats in Vogel's conflict test. ADX totally abolished the anticonflict effect of the 5,7-DHT lesion. Replacement treatment with corticosterone, but not with dexamethasone, reinstated the anticonflict effect. These results indicate that an intact adrenocortical function, possibly via brain steroid type I receptors, is required for the expression of the 5,7-DHT-induced anxiolytic-like effect. It is postulated that ADX lowers the concentration of endogenous positive modulators at the GABAA/BDZ-RC to a level no longer sufficient to produce anxiolytic-like effects in 5,7-DHT-lesioned animals. The finding that 5,7-DHT-lesioned animals were more sensitive than sham-lesioned controls to the anticonflict effect of the barbiturate-like corticosteroid THDOC provides further support for the contention that an increased endogenous activity at the GABAA/BDZ-RCes is involved in the anxiolytic-like effect observed in rats with a severe depletion of brain 5-HT.  相似文献   

19.
The goal of these experiments was to test the hypothesis that serotonin (5-HT) is involved in facilitation of the shortening reflex in the leech Hirudo medicinalis. For this reason, we have used the toxin 5-hydroxytryptamine (5,7-DHT) to deplete serotonin from the nervous systems of intact leeches and have assessed the effect on early facilitation, dishabituation, and sensitization of the touch-elicited shortening reflex using behavioral procedures previously developed in our lab (Boulis and Sahley, 1988). We find that 5,7-DHT lesions completely attenuate early facilitation and sensitization but only reduce dishabituation of the touch-elicited shortening reflex. Histological analyses of the ganglia from these leeches using glyoxilic acid staining procedures revealed an absence of staining in the Retzius cell of experimental leeches. All other serotonin-containing neurons showed glyoxilic acid staining comparable to that observed in the control leeches.  相似文献   

20.
Abstract

This study investigates the effects of chemically lesioning 5-hydroxytryptamine (5HT) neurones and chronic passive immunization of central thyrotrophin releasing hormone (TRH) on 5HT and TRH mediated behavioural responses. 5HT lesions produced by 5,7-dihydroxytryptamine (5,7-DHT) enhanced the behavioural response produced by the 5HT receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MEODMT) while decreasing the locomotor hyperactivity observed following administration of the TRH analogue CG 3509 but having no effect on the reversal of pentobarbitone sleep-time produced by CG 3509. Chronic intracerebroventricular infusion of the purified TRH antibody markedly increased the length of pentobarbitone-induced sleep-time while enhancing the effects of CG 3509 both on locomotor activity and pentobarbitone-induced sleep. TRH antibody infusion also increased the response produced by 5-MEODMT. The results indicate that chronic passive immunization of central TRH induces changes in TRH receptor responsiveness and that there is a functional interaction between TRH and 5HT neuronal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号