首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mandibular condyle is considered a good model for developing cancellous bone because of its rapid growth and high rate of remodeling. The aim of the present study was to analyze the simultaneous changes in microarchitecture and mineralization of cancellous bone during development in a three-dimensional fashion. Eight mandibular condyles of pigs aged 8 weeks prepartum to 108 weeks postpartum were scanned using microCT with an isotropic spatial resolution of 10 microm. The number of trabeculae decreased during development, whereas both the trabecular thickness and the distance between the trabeculae increased. The bone surface to volume ratio decreased during development, possibly limiting the amount of (re)modeling. Both the mean degree of mineralization and intratrabecular differences in mineralization between the surfaces and cores of trabecular elements increased during development. The trabecular surfaces were more highly mineralized in the older condyles compared to the younger ones. Together with the observed decrease in the relative size of trabecular surface, this finding suggests a decrease in (re)modeling activity during development. In accordance with the general growth and development of the pig, it was concluded that most developmental changes in cancellous bone occur until the age of 40 weeks postpartum.  相似文献   

2.
Accumulation of microdamage in aging and disease can cause skeletal fragility and is one of several factors contributing to osteoporotic fractures. To better understand the role of microdamage in fragility fracture, the mechanisms of bone failure must be elucidated on a tissue-level scale where interactions between bone matrix properties, the local biomechanical environment, and bone architecture are concurrently examined for their contributions to microdamage formation. A technique combining histological damage assessment of individual trabeculae with linear finite element solutions of trabecular von Mises and principal stress and strain was used to compare the damage initiation threshold between pre-menopausal (32-37 years, n=3 donors) and post-menopausal (71-80 years, n=3 donors) femoral cadaveric bone. Strong associations between damage morphology and stress and strain parameters were observed in both groups, and an age-related decrease in undamaged trabecular von Mises stress was detected. In trabeculae from younger donors, the 95% CI for von Mises stress on undamaged regions ranged from 50.7-67.9MPa, whereas in trabeculae from older donors, stresses were significantly lower (38.7-50.2, p<0.01). Local microarchitectural analysis indicated that thinner, rod-like trabeculae oriented along the loading axis are more susceptible to severe microdamage formation in older individuals, while only rod-like architecture was associated with severe damage in younger individuals. This study therefore provides insight into how damage initiation and morphology relate to local trabecular microstructure and the associated stresses and strains under loading. Furthermore, by comparison of samples from pre- and post-menopausal women, the results suggest that trabeculae from younger individuals can sustain higher stresses prior to microdamage initiation.  相似文献   

3.
Age-related changes in oxidized proteins   总被引:39,自引:0,他引:39  
We have previously described the oxidative inactivation of several key metabolic enzymes by a variety of mixed function oxidation systems. Because many of the enzymes which are inactivated have been shown by others to accumulate as inactive or less active forms during cellular aging, we have examined the levels of oxidatively modified proteins in two model systems used for studies on aging. The results show that levels of oxidatively modified proteins increase with age in circulating erythrocytes, and this change is correlated with the loss of marker enzyme activity. Our studies also show that in cultured fibroblasts from normal donors the levels of oxidatively modified proteins increase only after the age of 60. However, the levels of oxidatively modified proteins in fibroblasts from individuals with progeria or Werner's syndrome are significantly higher than age-matched controls. Moreover, treatment of glucose-6-phosphate dehydrogenase with a mixed function oxidation system leads to oxidative modification and increased heat lability of the enzyme. Taken together these results suggest that loss of functional enzyme activity and increased heat lability of enzymes during aging may be due in part to oxidative modification by mixed function oxidation systems.  相似文献   

4.
5.
The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling.  相似文献   

6.
7.
8.
We investigated age-related changes in immunocytochemical localisation of cytokeratin 16 (CK16) in thymuses of female Wistar rats at various stages of adult life (months 1, 3, 6, 12). Within the 1 st month of life, distribution of CK typical for individual subsets of thymic epithelial cells (TEC) was observed. The most numerous CK16+ TEC were observed in the outer region of medulla, in the outer cells of Hassall's corpuscles and in the superficial epithelial layer neighbouring the connective tissue of the capsule, septa and vessels of the thymus. In the 3rd month of life, increased intensity of CK16 reaction in superficial TEC was accompanied by increased numbers of CK 16+ TEC in the outer region of the medulla. Age-related alterations in the distribution of the studied markers were evident beginning from the 6th month of life and involved increased expression of CK16 in the superficial layer of TEC, which at the interface with the septa formed stratified epithelium. In parallel, decreased numbers of CK16+ TEC were observed in the outer region of the medulla. Changes in CK16+ TEC distribution of a similar type developed in 12-month old rats and they probably reflected altered functions of some TEC populations and decreased or increased biological activity of other TEC populations.  相似文献   

9.
Age-related changes in photosynthesis of woody plants   总被引:12,自引:0,他引:12  
Woody peoffnials do not appear to go through a defined senescence phase but do have predictable developmental stages. Reduced photosynthesis and stomatal conductance have been reported at all developmental transitions, although some studies have shown the opposite. What causes these changes and why do results differ among studies? Do these changes result from or cause changes in growth? What are the roles of genetics, size, changing conditions and cumulative environmental stress in aging trees? Definitive answers remain elusive but recent research is helping to clarify some of the processes associated with aging and to point the way for further study.  相似文献   

10.
To test the hypothesis that mechanical strain in the posterior human sclera is altered with age, 20 pairs of normal eyes from human donors aged 20 to 90 years old were inflation tested within 48-h postmortem. The intact posterior scleral shells were pressurized from 5 to 45 mmHg, while the full-field three-dimensional displacements of the scleral surface were measured using laser speckle interferometry. The full strain tensor of the outer scleral surface was calculated directly from the displacement field. Mean maximum principal (tensile) strain was computed for eight circumferential sectors ( $45^{\circ }$ wide) within the peripapillary and mid-peripheral regions surrounding the optic nerve head (ONH). To estimate the age-related changes in scleral strain, results were fit using a functional mixed effects model that accounts for intradonor variability and spatial autocorrelation. Mechanical tensile strain in the peripapillary sclera is significantly higher than the strain in the sclera farther away from the ONH. Overall, strains in the peripapillary sclera decrease significantly with age. Sectorially, peripapillary scleral tensile strains in the nasal sectors are significantly higher than the temporal sectors at younger ages, but the sectorial strain pattern reverses with age, and the temporal sectors exhibited the highest tensile strains in the elderly. Overall, peripapillary scleral structural stiffness increases significantly with age. The sectorial pattern of peripapillary scleral strain reverses with age, which may predispose adjacent regions of the lamina cribrosa to biomechanical insult. The pattern and age-related changes in sectorial peripapillary scleral strain closely match those seen in disk hemorrhages and neuroretinal rim area measurement change rates reported in previous studies of normal human subjects.  相似文献   

11.
To elucidate changes of the ureter with aging, the authors investigated age-related changes of element contents in human ureters. The subjects consisted of seven men and seven women, ranging in age from 61 to 97 yr. The contents of calcium, sulfur, and iron in the ureters increased progressively with aging, whereas the contents of phosphorus and magnesium did not increase with aging. Significant relationships were found both between calcium and sulfur contents and between calcium and iron contents in the ureters, but not between calcium and either phosphorus or magnesium contents. It was noteworthy that a significant relationship was also found between sulfur and iron contents in the ureters. It remains uncertain whether calcium forms a compound with sulfur or iron in aged human ureters or not.  相似文献   

12.
The alginate bead culture system has unique properties that make it possible to study the accumulation and turnover of macromolecules in two distinct matrix compartments of the cartilage matrix: the cell-associated matrix (CM) and the further removed matrix (FRM). Taking advantage of this culture system, the purpose of this study was to examine age-related changes in the metabolism of hyaluronan (HA) in these two compartments. Bovine chondrocytes, isolated from fetal, young adult, and old adult articular cartilage, were cultured in alginate beads. On Days 7 and 14 of culture, the alginate gel was solubilized, the CM and FRM were separated and macromolecules in both compartments were analyzed. When compared to the cells from fetal and old adult animals, the young adult cells proliferated at the fastest rate. Fetal cells produced a more abundant CM that was richer in proteoglycans (PGs) than the CM of young or old adult cells. With increasing age, there was an increased tendency for PG, collagen, and HA to escape incorporation into the CM and to become immobilized in the FRM. Very striking changes also were observed in the ratio of HA to PG, which increased markedly with age, and in the size of the HA molecules, which decreased markedly with age. The results suggest that the metabolism of HA in cartilage undergoes pronounced age-related changes, some of which are retained during culture in alginate gel. The findings also suggest that the previously documented age-related decrease in the size of HA in native bovine cartilage reflects, at least in part, a biochemical process occurring at the time or at least soon after the glycosaminoglycan chain is synthesized. It does not appear to simply be the result of age-related changes occurring slowly with time after synthesis, as was previously suggested to be the case for human articular cartilage.  相似文献   

13.
Age-related changes in T cell function.   总被引:4,自引:0,他引:4  
A comparison was made of the abilities of carrier (BGG)-primed T cell populations from young (4-month old), middle-aged (14- and 19-month old) and old (31- and 34-month old) mice to collaborate with hapten (DNP)-primed B cells from young mice in a cell-transfer system. The plaque-forming cell responses to 2,4-dinitrophenol (DNP) were measured by a modification of the Jerne plaque assay. The DNP-specific antibody-forming cell responses of old T cell/young B cell combinations were significantly lower than those of young T cell/young B cell combinations, both in the number of T cells needed for peak response and in the size of that response. These data indicate that the primed T cell populations of old mice are deficient by a factor of 6 in their ability to initiate B cell proliferation and differentiation into antibody-forming cells.  相似文献   

14.
15.
16.
Bone creep-fatigue damage accumulation   总被引:8,自引:0,他引:8  
Creep and fatigue tests were performed on human femoral cortical bone and the results were compared to a cumulative damage model for bone fracture. Fatigue tests in tension, compression, and reversed loading with a tensile mean stress were conducted at 2 Hz and 0.02 Hz. Load frequency had a strong influence on the number of cycles to failure but did not influence the total time to failure. Bone displayed poor creep-fracture properties in both tension and compression. The fracture surfaces of the tensile creep specimens are distinctly different than those of the compressive specimens. The results suggest that tensile cyclic loading creates primarily time-dependent damage and compressive cyclic loading creates primarily cycle-dependent damage. However, data for load histories involving both tensile and compressive loading indicate lower time to failure than predicted by a simple summation of time-dependent and cycle-dependent damage.  相似文献   

17.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

18.
19.
20.
The aim of the present study was to evaluate age- and sex-related changes in the size and shape of long hand bones in a large Chuvashian cohort using cross-sectional and longitudinal study designs. The data were gathered in 1994 (557 individuals) and 2002 (513 individuals). The latter sample included 260 individuals that were studied only during the second expedition, and 253 individuals who were previously investigated in 1994. Statistical analyses included a maximum likelihood-based model-fitting technique and a t-test comparison. We found evidence for secular trend of hand bone size in both males and females within the Chuvashian population. In males, the length and total area of the long hand bones were greater in younger individuals, but mid-shaft bone width remained almost the same in individuals born at different periods of the last century. In females, the length of the hand bones and total bone area remained unchanged in women born after 1937. However, bone mid-shaft width gradually decreased in women born after 1940. Therefore, we argue that, at least within the Chuvashian population, there is a secular trend towards a more gracile appendicular skeleton in both males and females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号