共查询到20条相似文献,搜索用时 15 毫秒
1.
Antón Barreiro-Iglesias Guixin Zhang Michael E. Selzer Michael I. Shifman 《Journal of visualized experiments : JoVE》2014,(92)
After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are bad regenerators. These neurons can most easily be identified in wholemount CNS preparations. In order to understand the neuron-intrinsic mechanisms that favor or inhibit axon regeneration after injury in the vertebrates CNS, we determine differences in gene expression between the good and bad regenerators, and how expression is influenced by spinal cord transection. This paper illustrates the techniques for housing larval and recently transformed adult sea lampreys in fresh water tanks, producing complete spinal cord transections under microscopic vision, and preparing brain and spinal cord wholemounts for in situ hybridization. Briefly, animals are kept at 16 °C and anesthetized in 1% Benzocaine in lamprey Ringer. The spinal cord is transected with iridectomy scissors via a dorsal approach and the animal is allowed to recover in fresh water tanks at 23 °C. For in situ hybridization, animals are reanesthetized and the brain and cord removed via a dorsal approach. 相似文献
2.
Polina D. Freitas Anastasia S. Yandulskaya James R. Monaghan 《Developmental neurobiology》2019,79(5):437-452
In some vertebrates, a grave injury to the central nervous system (CNS) results in functional restoration, rather than in permanent incapacitation. Understanding how these animals mount a regenerative response by activating resident CNS stem cell populations is of critical importance in regenerative biology. Amphibians are of a particular interest in the field because the regenerative ability is present throughout life in urodele species, but in anuran species it is lost during development. Studying amphibians, who transition from a regenerative to a nonregenerative state, could give insight into the loss of ability to recover from CNS damage in mammals. Here, we highlight the current knowledge of spinal cord regeneration across vertebrates and identify commonalities and differences in spinal cord regeneration between amphibians. 相似文献
3.
Ellen M. Dawley Shoji O. Samson Kenton T. Woodard Kathryn A. Matthias 《Journal of morphology》2012,273(2):211-225
Adult urodele amphibians possess extensive regenerative abilities, including lens, jaws, limbs, and tails. In this study, we examined the cellular events and time course of spinal cord regeneration in a species, Plethodon cinereus, that has the ability to autotomize its tail as an antipredator strategy. We propose that this species may have enhanced regenerative abilities as further coadaptations with this antipredator strategy. We examined the expression of nestin, vimentin, and glial fibrillary acidic protein (GFAP) after autotomy as markers of neural precursor cells and astroglia; we also traced the appearance of new neurons using 5‐bromo‐2′‐deoxyuridine/neuronal nuclei (BrdU/NeuN) double labeling. As expected, the regenerating ependymal tube was a major source of new neurons; however, the spinal cord cranial to the plane of autotomy showed significant mitotic activity, more extensive than what is reported for other urodeles that cannot autotomize their tails. In addition, this species shows upregulation of nestin, vimentin, and GFAP within days after tail autotomy; further, this expression is upregulated within the spinal cord cranial to the plane of autotomy, not just within the extending ependymal tube, as reported in other urodeles. We suggest that enhanced survival of the spinal cord cranial to autotomy allows this portion to participate in the enhanced recovery and regeneration of the spinal cord. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc. 相似文献
4.
目的:探究高等动物脊髓损伤修复困难的原因。方法:利用免疫组化方法检验中华大蟾蜍脊髓损伤后凋亡相关基因及c—kit的表达。结果:①损伤后促凋亡因子(easpase-3及bax)随时间变化的规律为先升高再降低;②抑制凋亡因子bcl-2表达规律为先降低后升高;③bcl-2/bax比值的变化趋势与easpase-3的相反,bel-2/bax比值的升高可能抑制caspase-3表达;④c—kit表达呈现先增高再降低的规律,c-kit表达出现峰值时bcl-2表达增加,bax减少。结论:这些差异可能能够促进蟾蜍神经损伤后修复,也是低等脊椎动物较高等脊椎动物再生能力强的原因之一,为哺乳类脊髓损伤后修复方法研究提供一定的理论依据。 相似文献
5.
用傅里叶变换红外光谱仪分析了坐骨神经损伤后L4-6脊髓节段腹角区域红外光谱变化,观察结果表明,损伤后8小时至3天以及10天损伤侧显示磷酸二酯在团vasPO2-和vsPO2-的1240cm-1和1080cm-1谱线明显增强;而且损伤后10天1080cm-1谱线增强幅度较大。提示损伤引发了神经组织核酸(DN和RNA)合成的增加。显示酰胺Ⅰ(amideⅠ)的1652cm-1谱线于损伤后3天增强,而1天和10天减弱,揭示损伤引起的神经元蛋白质含量和结构的变化是非常复杂的。 相似文献
6.
The ability of birds and mammals to regenerate tissues is limited. By contrast, urodele amphibians can regenerate a variety of injured tissues such as intestine, cardiac muscle, lens and neural retina, as well as entire structures such as limbs, tail and lower jaw. This regenerative capacity is associated with the ability to form masses of mesenchyme cells (blastemas) that differentiate into the missing tissues or parts. Understanding the mechanisms that underlie blastema formation in urodeles will provide valuable tools with which to achieve the goal of stimulating regeneration in mammalian tissues that do not naturally regenerate. Here we discuss an example of tissue regeneration (spinal cord) and an example of epimorphic appendage regeneration (limb) in the axolotl Ambystoma mexicanum , emphasizing analysis of the processes that produce the regeneration blastema and of the tissue interactions and blastemal products that contribute to the regeneration-promoting environment. 相似文献
7.
Lorenzo Alibardi 《Journal of morphology》2020,281(10):1260-1270
The transected lumbar spinal cord of lizards was studied for its ability to recover after paralysis. At 34 days post-lesion about 50% of lizards were capable of walking with a limited coordination, likely due to the regeneration of few connecting axons crossing the transection site of the spinal cord. This region, indicated as “bridge”, contains glial cells among which oligodendrocytes and their elongation that are immunolabeled for NOGO-A. A main reactive protein band occurs at 100–110 kDa but a weaker band is also observed around 240 kDa, suggesting fragmentation of the native protein due to extraction or to physiological processing of the original protein. Most of the cytoplasmic immunolabeling observed in oligodendrocytes is associated with vesicles of the endoplasmic reticulum. Also, the nucleus is labeled in some oligodendrocytes that are myelinating sparse axons observed within the bridge at 22–34 days post-transection. This suggests that axonal regeneration is present within the bridge region. Immunolabeling for NOGO-A shows that the protein is also present in numerous reactive neurons, in particular motor-neurons localized in the proximal stump of the transected spinal cord. Ultrastructural immunolocalization suggests that NOGO is synthesized in the ribosomes of these neurons and becomes associated with the cisternae of the endoplasmic reticulum, probably following a secretory pathway addressed toward the axon. The present observations suggest that, like for the regenerating spinal cord of fish and amphibians, also in lizard NOGO-A is present in reactive neurons and appears associated to axonal regeneration and myelination. 相似文献
8.
NB‐3 signaling mediates the cross‐talk between post‐traumatic spinal axons and scar‐forming cells
下载免费PDF全文

Chao Zhang Yue Yin Yasushi Shimoda Kazutada Watanabe Yaobo Liu 《The EMBO journal》2016,35(16):1745-1765
Little is known about the molecules mediating the cross‐talk between post‐traumatic axons and scar‐forming cells after spinal cord injury. We found that a sustained NB‐3 induction was simultaneously present in the terminations of post‐traumatic corticospinal axons and scar‐forming cells at the spinal lesion site, where they were in direct contact when axons tried to penetrate the glial scar. The regrowth of corticospinal axons was enhanced in vivo with NB‐3 deficiency or interruption of NB‐3 trans‐homophilic interactions. Biochemical, in vitro and in vivo evidence demonstrated that NB‐3 homophilically interacted in trans to initiate a growth inhibitory signal transduction from scar‐forming cells to neurons by modulating mTOR activity via CHL1 and PTPσ. NB‐3 deficiency promoted BMS scores, electrophysiological transmission, and synapse reformation between regenerative axons and neurons. Our findings demonstrate that NB‐3 trans‐homophilic interactions mediate the cross‐talk between post‐traumatic axons and scar‐forming cells and impair the intrinsic growth ability of injured axons. 相似文献
9.
Charles A. Cain 《Bioelectromagnetics》1981,2(1):23-32
An alternating component of potential across the membrane of an excitable cell may change the membrane conductance by interacting with the voltagesensing charged groups of the protein macromolecules that form voltage-sensitive ion channels. Because the probability that a voltage sensor is in a given state is a highly nonlinear function of the applied electric field, the average occupancy of a particular state will change in an oscillating electric field of sufficient magnitude. This “rectification” at the level of the voltage sensors could result in conformational changes (gating) that would modify channel conductance. A simplified two-state model is examined where the relaxation time of the voltage sensor is assumed to be considerably faster than the fastest changes of ionic conductance. Significant changes in the occupancy of voltage sensor states in response to an applied oscillating electric field are predicted by the model. 相似文献
10.
Favereaux A Thoumine O Bouali-Benazzouz R Roques V Papon MA Salam SA Drutel G Léger C Calas A Nagy F Landry M 《The EMBO journal》2011,30(18):3830-3841
Chronic pain states are characterized by long-term sensitization of spinal cord neurons that relay nociceptive information to the brain. Among the mechanisms involved, up-regulation of Cav1.2-comprising L-type calcium channel (Cav1.2-LTC) in spinal dorsal horn have a crucial role in chronic neuropathic pain. Here, we address a mechanism of translational regulation of this calcium channel. Translational regulation by microRNAs is a key factor in the expression and function of eukaryotic genomes. Because perfect matching to target sequence is not required for inhibition, theoretically, microRNAs could regulate simultaneously multiple mRNAs. We show here that a single microRNA, miR-103, simultaneously regulates the expression of the three subunits forming Cav1.2-LTC in a novel integrative regulation. This regulation is bidirectional since knocking-down or over-expressing miR-103, respectively, up- or down-regulate the level of Cav1.2-LTC translation. Functionally, we show that miR-103 knockdown in naive rats results in hypersensitivity to pain. Moreover, we demonstrate that miR-103 is down-regulated in neuropathic animals and that miR-103 intrathecal applications successfully relieve pain, identifying miR-103 as a novel possible therapeutic target in neuropathic chronic pain. 相似文献
11.
12.
Loske P Boato F Hendrix S Piepgras J Just I Ahnert-Hilger G Höltje M 《Journal of neurochemistry》2012,120(6):1084-1096
C3 ADP-ribosyltransferase is a valuable tool to study Rho-dependent cellular processes. In the current study we investigated the impact of enzyme-deficient peptides derived from Clostridium botulinum C3 transferase in the context of neuronal process elongation and branching, synaptic connectivity, and putative beneficial effects on functional outcome following traumatic injury to the CNS. By screening a range of peptidic fragments, we identified three short peptides from C3bot that promoted axon and dendrite outgrowth in cultivated hippocampal neurons. Furthermore, one of these fragments, a 26-amino acid peptide covering the residues 156-181 enhanced synaptic connectivity in primary hippocampal culture. This peptide was also effective to foster axon outgrowth and re-innervation in organotypical brain slice culture. To evaluate the potential of the 26mer to foster repair mechanisms after CNS injury we applied this peptide to mice subjected to spinal cord injury by either compression impact or hemisection. A single local administration at the site of the lesion improved locomotor recovery. In addition, histological analysis revealed an increased serotonergic input to lumbar motoneurons in treated compared with control mice. Pull-down assays showed that lesion-induced up-regulation of RhoA activity within the spinal cord was largely blocked by C3bot peptides despite the lack of enzymatic activity. 相似文献
13.
William R. Saum Richard McGee Jr. Jeffrey Love 《Cellular and molecular neurobiology》1981,1(3):319-324
The effects of alterations in membrane phospholipid fatty acid composition on the excitability of neuroblastoma × glioma hybrid cells, clone NG108-15, were examined using intracellular recording techniques. Cells were grown in the presence of arachidonate (20:4) added to the culture medium as a complex with bovine serum albumin. Exposure of the cells to 20:4 for 3–21 days produced a 40% decrease in the maximum rate of rise of the action potential (dV/dt) with a small change in its amplitude. The resting membrane potential and passive properties of the cells were unaffected. An effect of 20:4 was not observed until 24 hr after treatment and increased over the next 2 days. The phospholipid content of 20:4 and its metabolite 22:4 increased from 6.9% to 25.3% of total fatty acids during approximately the same time span. It is concluded that the action potential dV/dt can be altered by changes in membrane lipid composition. 相似文献
14.
Cízková D Rosocha J Vanický I Jergová S Cízek M 《Cellular and molecular neurobiology》2006,26(7-8):1165-1178
Human mesenchymal stem cells (hMSCs) derived from adult bone marrow represent a potentially useful source of cells for cell replacement therapy after nervous tissue damage. They can be expanded in culture and reintroduced into patients as autografts or allografts with unique immunologic properties. The aim of the present study was to investigate (i) survival, migration, differentiation properties of hMSCs transplanted into non-immunosuppressed rats after spinal cord injury (SCI) and (ii) impact of hMSC transplantation on functional recovery. Seven days after SCI, rats received i.v. injection of hMSCs (2×106 in 0.5 mL DMEM) isolated from adult healthy donors. Functional recovery was assessed by Basso–Beattie–Bresnahan (BBB) score weekly for 28 days. Our results showed gradual improvement of locomotor function in transplanted rats with statistically significant differences at 21 and 28 days. Immunocytochemical analysis using human nuclei (NUMA) and BrdU antibodies confirmed survival and migration of hMSCs into the injury site. Transplanted cells were found to infiltrate mainly into the ventrolateral white matter tracts, spreading also to adjacent segments located rostro-caudaly to the injury epicenter. In double-stained preparations, hMSCs were found to differentiate into oligodendrocytes (APC), but not into cells expressing neuronal markers (NeuN). Accumulation of GAP-43 regrowing axons within damaged white matter tracts after transplantation was observed. Our findings indicate that hMSCs may facilitate recovery from spinal cord injury by remyelinating spared white matter tracts and/or by enhancing axonal growth. In addition, low immunogenicity of hMSCs was confirmed by survival of donor cells without immunosuppressive treatment. 相似文献
15.
BMP inhibition enhances axonal growth and functional recovery after spinal cord injury 总被引:1,自引:0,他引:1
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor-β superfamily. BMPs regulate several crucial aspects of embryonic development and organogenesis. The reemergence of BMPs in the injured adult CNS suggests their involvement in the pathogenesis of the lesion. Here, we demonstrate that BMPs are potent inhibitors of axonal regeneration in the adult spinal cord. The expression of BMP-2/4 is elevated in oligodendrocytes and astrocytes around the injury site following spinal cord contusion. Intrathecal administration of noggin – a soluble BMP antagonist—leads to enhanced locomotor activity and reveals significant regrowth of the corticospinal tract after spinal cord contusion. Thus, BMPs play a role in inhibiting axonal regeneration and limiting functional recovery following injury to the CNS. 相似文献
16.
Taniguchi Y Sugiura T Tazaki A Watanabe K Mochii M 《Development, growth & differentiation》2008,50(2):109-120
Tail regeneration in urodeles is dependent on the spinal cord (SC), but it is believed that anuran larvae regenerate normal tails without the SC. To evaluate the precise role of the SC in anuran tail regeneration, we developed a simple operation method to ablate the SC completely and minimize the damage to the tadpole using Xenopus laevis . The SC-ablated tadpole regenerated a twisted and smaller tail. These morphological abnormalities were attributed to defects in the notochord (NC), as the regenerated NC in the SC-ablated tail was short, slim and twisted. The SC ablation never affected the early steps of the regeneration, including closure of the amputated surface with epidermis and accumulation of the NC precursor cells. The proliferation rate of the NC precursor cells, however, was reduced, and NC cell maturation was retarded in the SC-ablated tail. These results show that the SC has an essential role in the normal tail regeneration of Xenopus larvae, especially in the proliferation and differentiation of the NC cells. Gene expression analysis and implantation of a bead soaked with growth factor showed that fibroblast growth factor-2 and -10 were involved in the signaling molecules, which were expressed in the SC and stimulated growth of the NC cells. 相似文献
17.
A number of organs have the intrinsic ability to regenerate, a distinctive feature that varies among organisms. Organ regeneration is a process not fully yet understood. However, when its underlying mechanisms are unraveled, it holds tremendous therapeutic potential for humans. In this review, we chose to summarize the repair and regenerative potential of the following organs and organ systems: thymus, adrenal gland, thyroid gland, intestine, lungs, heart, liver, blood vessels, germ cells, nervous system, eye tissues, hair cells, kidney and bladder, skin, hair follicles, pancreas, bone, and cartilage. For each organ, a review of the following is presented: (a) factors, pathways, and cells that are involved in the organ's intrinsic regenerative ability, (b) contribution of exogenous cells – such as progenitor cells, embryonic stem cells, induced pluripotent stem cells, and bone marrow‐, adipose‐ and umbilical cord blood‐derived stem cells – in repairing and regenerating organs in the absence of an innate intrinsic regenerative capability, (c) and the progress made in engineering bio‐artificial scaffolds, tissues, and organs. Organ regeneration is a promising therapy that can alleviate humans from diseases that have not been yet cured. It is also superior to already existing treatments that utilize exogenous sources to substitute for the organ's lost structure and/or function(s). (Part C) 96:1–29, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
18.
The effects of various ions on L-glutamate (L-Glu) binding sites (Na+-dependent, Cl(-)-dependent, and Cl(-)-independent) in synaptic plasma membranes (SPM) isolated from rat spinal cord and forebrain were examined. Cl(-)-dependent binding sites were over twofold higher in spinal cord (Bmax = 152 +/- 34 pmol/mg protein) as compared to forebrain SPM (Bmax = 64 +/- 12 pmol/mg protein). Na+-dependent binding, on the other hand, was nearly sixfold less in spinal cord (Bmax = 74 +/- 10 pmol/mg protein) compared to forebrain SPM (408 +/- 26 pmol/mg protein). Uptake of L-Glu (Na+-dependent) was also eightfold less in the P2 fraction from spinal cord relative to forebrain (Vmax of 2.89 and 22.3 pmol/mg protein/min, respectively). The effects of Na+, K+, NH4+, and Ca2+ on L-Glu binding sites were similar in both regions of the CNS. In addition, in spinal cord membranes, Br-, I-, and NO3- were equivalent to Cl- in their capacity to stimulate L-Glu binding, whereas F- and CO3- were less effective. Cl(-)-dependent L-Glu binding in spinal cord membranes consisted of two distinct sites. The predominant site (74% of the total) had characteristics similar to the Cl(-)-dependent binding site in forebrain membranes [i.e., Ki values of 5.7 +/- 1.4 microM and 119 +/- 38 nM for 2-amino-4-phosphonobutyric acid (AP4) and quisqualic acid, (QUIS), respectively]. The other Cl(-)-dependent site was unaffected by AP4 but was blocked by QUIS (Ki = 14.2 +/- 4.8 microM). 相似文献
19.
G. C. Bonazzola G. Ciocchetti E. Conte A. De Marco M. Maringelli A. Trabucco 《European biophysics journal : EBJ》1985,12(1):51-55
The exploitation of the optical tunnel effect allows the detection of very small spatial variations. The theory of optical tunneling is extended to an absorbing medium and an experimental apparatus capable of detecting displacements down to 0.19 nm, with fluctuations equivalent to 0.10 nm, is described. Some possible applications to the measurement of electrically induced volume changes of biological membranes are discussed. 相似文献
20.
急性脊髓损伤后大鼠电刺激运动诱发电位的变化 总被引:3,自引:0,他引:3
目的:比较不同程度脊髓损伤(SCI)与运动诱发电位(MEP)变化之间的关系,探索MEP检查在SCI早期诊断及预后中的价值。方法:27只雄性SD大鼠以改良Allen‘s打击法致伤T8-T9脊髓,按打击冲量随机分为空白对照组(n=5),SCI A组(50gcf,n=8),SCI B组(70gcf,n=8)和SCI C组(100gcf,n=6),采用单极经皮层电刺激,分别于损伤前、伤后即刻、15min、30min、1h、3h和6h连续观察scMEP变化,并计算脊髓出血坏死区域占脊髓横截面积的比率。结果:对照组MEP无显著改变,SCI A组和SCI B组动物MEP早成份波幅立即减低或消失,以后有所恢复,晚成份波消失后未再出现。SCI C组动物除2只大鼠SCI后MEP仍有所恢复外,其余动物再未出现MEP波。脊髓损伤随打击冲量增大而增加,与伤后1h scMEP最大波幅呈显著相关(r=-0.821)。结论:SCI后scMEP的变化程度与打击冲量和脊髓病理损伤面积相关,提示scMEP可以作为一种脊髓功能检测的客观指标。 相似文献