首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Phospholipase A(2) (PLA(2)) enzymes participate in a potent inflammatory pathway through the liberation of arachidonic acid upon hydrolysis of membrane glycerophospholipids. The presence of implanted polycarbonate-urethane (PCNU) materials, used in several medical applications, has the ability to influence inflammatory responses of human macrophages that are recruited to a tissue-material interface; however, the specific inflammatory pathways that are activated upon macrophage attachment to PCNU are largely unknown. Previous studies suggested the participation of PLA(2) pathways in material degradation with the use of chemical inhibitors, such as aristolochic acid (ARIST), however not accurately defining the specific PLA(2) enzymes involved. The current study aimed to establish specific groups of PLA(2) involved in the macrophage foreign body response to PCNU. ARIST was assessed for specific effects on secretory PLA(2) (sPLA(2)) protein expression and non-specific effects on key proteins, beta-actin and monocyte-specific esterase, implicated in the macrophage attack on PCNU materials. Macrophage attachment to PCNU materials induced increased intracellular expression of cytosolic PLA(2) (cPLA(2)), but not sPLA(2), relative to tissue culture polystyrene (TCPS) as detected by immunoblot analysis, demonstrating an early and delayed stimulation during the time course of increased cPLA(2) protein expression. Laser scanning confocal microscopy images indicated a change in location of cPLA(2) in macrophages adherent to PCNU surfaces compared to TCPS. This study has illustrated changes in macrophage cPLA(2) expression in response to cell-attachment to PCNU surfaces, demonstrating that the macrophage foreign body response to biomaterials induces a potent inflammatory pathway, which may lead to tissue damage near the site of material implantation.  相似文献   

2.
Matheson LA  McBane JE  Malowany JI  Santerre JP  Labow RS 《BioTechniques》2007,42(6):744, 746-744, 750
In vitro cell culture has become one of the most widely used techniques in biological and health sciences research, with the most common culture supports being either tissue culture grade polystyrene (TCPS) or polydimethylsiloxane (PDMS). It has previously been shown that monocyte-derived macrophages (MDMs) respond to material surface chemistry, synthesizing and releasing degradative activities that could produce products, which alter the cell's response. In this study, functional parameters of differentiated U937 macrophage-like cells were compared when cultured on nondegradable standard control surfaces versus models of biomaterials (polycarbonate-based polyurethanes) used in the manufacture of medical devices previously shown to degrade and/or elicit pathways of inflammation. Although the influence of PDMS and TCPS on cell function is often underappreciated by investigators, both surfaces elicited enzyme markers of inflammation. Cells on TCPS had the highest intracellular and released esterase activities and protein levels. Cells on PDMS had the most released acid phosphatase activity and protein (P < 0.001), as well as de novo 57- and 59-kDa released proteins. The criteria for defining an activated cell phenotype become critically important when materials such as PDMS and TCPS are used as standard control surfaces whether in experiments for research in elucidating metabolic pathways or in screening drugs and materials for therapeutic uses.  相似文献   

3.
4.
Monocytes are recruited to the material surface of an implanted biomedical device recognizing it as a foreign body. Differentiation into macrophages subsequently occurs followed by fusion to form foreign body giant cells (FBGCs). Consequently, implants can become degraded, cause chronic inflammation or become isolated by fibrous encapsulation. In this study, a relationship between material surface chemistry and the FBGC response was demonstrated by seeding mature monocyte-derived macrophages (MDMs) on polycarbonate-based polyurethanes that differed in their chemical structures (synthesized with poly(1,6-hexyl 1,2-ethyl carbonate) diol, and either (14)C-hexane diisocyanate and butanediol (BD) (referred to as HDI) or 4,4'-methylene bisphenyl diisocyanate and (14)C-BD (referred to as MDI)) and material degradation assessed. At 48 h of cell-material interaction, the FBGC attached to HDI were more multinucleated (73%) compared to MDI or the polystyrene (PS) control (21 and 36%, respectively). There was a fivefold increase in the synthesis and secretion of a protein with an approximate molecular weight of 48 kDa and a pI of 6.1 (determined by two-dimensional gel electrophoresis) only from cells seeded on HDI. Immunoprecipitation confirmed that MSE and CE were synthesized and secreted de novo. Immunoblotting also showed an increase in secreted monocyte-specific esterase (MSE) and cholesterol esterase (CE) from cells seeded on HDI relative to PS and MDI. Significantly more radiolabel ((14)C) release and esterase activity were elicited by MDMs on HDI than MDI (P < 0.05). The material that was more degradable (HDI), elicited greater protein synthesis and esterase secretion as well as more multinucleated MDMs than MDI, suggesting that the material surface chemistry modulates the function of MDM at the site of an inflammatory response to an implanted device.  相似文献   

5.
6.
7.
8.
Cyclin-dependent kinase inhibitors such as p27(KIP1) have recently been shown to lead to cellular differentiation by causing cell cycle arrest, but it is unknown whether similar events occur in differentiating promyeloid cells. Hematopoietic progenitor cells undergo lineage-restricted differentiation, which is accompanied by expression of distinct maturation markers. Here we show that the classical growth factor insulin-like growth factor I (IGF-I) potently promotes vitamin D(3)-induced macrophage differentiation of promyeloid cells, as assessed by measurement of a coordinate increase in expression of the integrin alpha subunit CD11b, the CD14 lipopolysaccharide receptor, and the macrophage-specific esterase, alpha-naphthyl acetate esterase, as early as 24 h following initiation of terminal differentiation. Addition of IGF-I to cells undergoing vitamin D(3)-induced differentiation also leads to an early increase in expression of cyclin E, phosphorylation of the retinoblastoma tumor suppressor protein, and a doubling of the cell number. Early expression of CD11b (24 h) is simultaneously accompanied by inhibition in the expression of p27(KIP1). Cell cycle analysis with propidium iodide revealed that CD11b expression at 24 h following initiation of differentiation occurs at all phases of the cell cycle instead of only those cells arrested in G(0)/G(1). Similarly, development of a novel double-labeling intra- and extracellular flow-cytometric technique demonstrated that single cells expressing the mature leukocyte differentiation antigen CD11b can also incorporate the thymidine analog bromodeoxyuridine. Likewise, expression of the intracellular DNA polymerase delta cofactor/proliferating-cell nuclear antigen at 24 h is also simultaneously expressed with the surface marker CD11b, indicating that these cells continue to proliferate early in their differentiation program. Finally, at 24 h following induction of differentiation, IGF-I promoted a fourfold increase in the uptake of [(3)H]thymidine by purified populations of CD11b-expressing cells. Taken together, these data demonstrate that the initial steps associated with terminal macrophage differentiation occur concomitantly with progression through the cell cycle and that these very early differentiation events do not require the accumulation of p27(KIP1).  相似文献   

9.
10.

Introduction

Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades of accumulated research. In contrast, the experience base is limited for materials used in microfludics chip fabrication.

Methods

The effect of different materials (PS, PMMA and perforated PMMA with a piece of PDMS underneath) on the growth and differentiation of PC12 (adrenal phaeochromocytoma) cells into neuronal-like cells was investigated using cell viability, cell cycle distribution, morphology, and gene expression analysis.

Results/Conclusions

After differentiation, the morphology, viability and cell cycle distribution of PC12 cells grown on PS, PMMA with and without PDMS underneath was the same. By contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development and function. However, there were also many markers for neuronal cell development and functions that were expressed similarly in cells differentiating on PS, PMMA and PMMA with PDMS underneath. In conclusion, it was shown that PMMA has a minor impact and PDMS a major impact on gene expression in PC12 cells.  相似文献   

11.
12.
Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM). Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr) increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.  相似文献   

13.
Mouse double-minute 1 (Mdm1) was originally identified as a gene amplified in transformed mouse cells and more recently as being highly up-regulated during differentiation of multiciliated epithelial cells, a specialized cell type having hundreds of centrioles and motile cilia. Here we show that the MDM1 protein localizes to centrioles of dividing cells and differentiating multiciliated cells. 3D-SIM microscopy showed that MDM1 is closely associated with the centriole barrel, likely residing in the centriole lumen. Overexpression of MDM1 suppressed centriole duplication, whereas depletion of MDM1 resulted in an increase in granular material that likely represents early intermediates in centriole formation. We show that MDM1 binds microtubules in vivo and in vitro. We identified a repeat motif in MDM1 that is required for efficient microtubule binding and found that these repeats are also present in CCSAP, another microtubule-binding protein. We propose that MDM1 is a negative regulator of centriole duplication and that its function is mediated through microtubule binding.  相似文献   

14.

Background

Mesenchymal stem cells (MSC) represent a particularly attractive cell type for bone tissue engineering because of their ex vivo expansion potential and multipotent differentiation capacity. MSC are readily differentiated towards mature osteoblasts with well-established protocols. However, tissue engineering frequently involves three-dimensional scaffolds which (i) allow for cell adhesion in a spatial environment and (ii) meet application-specific criteria, such as stiffness, degradability and biocompatibility.

Methodology/Principal Findings

In the present study, we analysed two synthetic, long-term degradable polymers for their impact on MSC-based bone tissue engineering: PLLA-co-TMC (Resomer® LT706) and poly(ε-caprolactone) (PCL). Both polymers enhance the osteogenic differentiation compared to tissue culture polystyrene (TCPS) as determined by Alizarin red stainings, scanning electron microscopy, PCR and whole genome expression analysis. Resomer® LT706 and PCL differ in their influence on gene expression, with Resomer® LT706 being more potent in supporting osteogenic differentiation of MSC. The major trigger on the osteogenic fate, however, is from osteogenic induction medium.

Conclusion

This study demonstrates an enhanced osteogenic differentiation of MSC on Resomer® LT706 and PCL compared to TCPS. MSC cultured on Resomer® LT706 showed higher numbers of genes involved in skeletal development and bone formation. This identifies Resomer® LT706 as particularly attractive scaffold material for bone tissue engineering.  相似文献   

15.
16.
We investigated the effect of IFN-beta on beta-chemokine expression in differentiating human peripheral blood monocytes. MCP-1, MIP-1alpha and MIP-1beta were constitutively expressed in 1 day-cultured monocytes, and their secretion increased with time in culture despite any change in mRNA accumulation. IFN-beta treatment of differentiating monocytes resulted in a marked and dose-dependent increase of beta-chemokine secretion, which was regulated differently with respect to the differentiation stage. In particular, IFN-beta upregulated MCP-1 secretion in monocytes at all stages of differentiation although its effect was significantly higher in 1-day cultured monocytes as compared to monocyte-derived macrophages (MDM). In contrast, MIP-1alpha and MIP-1beta secretion was up-regulated by IFN-beta only in MDM. Although MCP-1, MIP-1alpha and MIP-1beta mRNA expression was up-regulated by IFN-beta in both 1 day-cultured monocytes and MDM, no correlation was found between mRNA level and protein secretion. These results suggest that the regulation of beta-chemokine secretion in monocytes/macrophages by IFN-beta occurred through different mechanisms, involving both a direct effect of this cytokine on chemokine gene expression and translational/post-translational steps of regulation more likely linked to the differentiation process. This finding reveals a novel role for this cytokine in the recruitment of specific cell types during the immune response, which may be relevant in the control of viral infections in vivo.  相似文献   

17.
In order to understand the fundamental and putative roles of PrP(c) in the central nervous system, neuronal cell lines were established. Cells were immortalized by recombinant retrovirus vector-mediated transduction of SV40 T-antigen gene. Among these, two cell lines were selected based on their RT-PCR expressions of neuron-specific neurofilament (NF-H, NF-M) and cell morphology. These cell lines showed the properties of neuronal progenitor cells in antigenicity, morphology and responses to differentiating agents. Expression of PrP(c) was detected by immunocytochemical analysis. These cell lines responded to differentiating agents such as dibutyl cyclic AMP (dcAMP) and phorbol 12-myristate 13-acetate (PMA) before developing into neuronal-like cells. Neurite extensions were observed 20 min after incubation with the differentiating agents. Treatment with nerve growth factor (NGF) and insulin induced cell differentiation and enhanced expression of PrP gene (Prnp) mRNA and protein. The latter phenomenon was not inhibited by wortmannin, which is a specific inhibitor of phosphatidylinositol 3-kinase. These results suggest that PrP(c) plays an important role in the differentiation-mediated classic signaling pathway of neuronal cell.  相似文献   

18.
19.
The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and chemical properties of the material surface can be advantageously used for constructing patterned surfaces. Micropatterned surfaces enable regionally selective cell adhesion and directed growth, which can be utilized in tissue engineering, in constructing microarrays and in biosensorics. Nanopatterned surfaces are an effective tool for manipulating the type, number, spacing and distribution of ligands for cell adhesion receptors on the material surface. As a consequence, these surfaces are able to control the size, shape, distribution and maturity of focal adhesion plaques on cells, and thus cell adhesion, proliferation, differentiation and other cell functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号