首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eukaryotes, dihydropyrimidinase catalyzes the second step of the reductive pyrimidine degradation, the reversible hydrolytic ring opening of dihydropyrimidines. Here we describe the three-dimensional structures of dihydropyrimidinase from two eukaryotes, the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum, determined and refined to 2.4 and 2.05 angstroms, respectively. Both enzymes have a (beta/alpha)8-barrel structural core embedding the catalytic di-zinc center, which is accompanied by a smaller beta-sandwich domain. Despite loop-forming insertions in the sequence of the yeast enzyme, the overall structures and architectures of the active sites of the dihydropyrimidinases are strikingly similar to each other, as well as to those of hydantoinases, dihydroorotases, and other members of the amidohydrolase superfamily of enzymes. However, formation of the physiologically relevant tetramer shows subtle but nonetheless significant differences. The extension of one of the sheets of the beta-sandwich domain across a subunit-subunit interface in yeast dihydropyrimidinase underlines its closer evolutionary relationship to hydantoinases, whereas the slime mold enzyme shows higher similarity to the noncatalytic collapsin-response mediator proteins involved in neuron development. Catalysis is expected to follow a dihydroorotase-like mechanism but in the opposite direction and with a different substrate. Complexes with dihydrouracil and N-carbamyl-beta-alanine obtained for the yeast dihydropyrimidinase reveal the mode of substrate and product binding and allow conclusions about what determines substrate specificity, stereoselectivity, and the reaction direction among cyclic amidohydrolases.  相似文献   

2.
A high-performance liquid chromatography (HPLC) method for enzyme activity assays using a hydrophilic interaction liquid chromatography (HILIC) column in combination with an evaporative light scattering detector was developed. The method was used to measure the activity of the non-heme mono-iron enzyme cysteine dioxygenase. The substrate cysteine and the product cysteine sulfinic acid are very weak chromophores, making direct ultraviolet (UV) detection without derivatization rather insensitive; moreover, derivatization of cysteine is often not efficient. Using the system described, underivatized substrate and product in samples from cysteine dioxygenase activity assays could be separated and analyzed. Furthermore, it was possible to quantify cysteic acid, the noncatalytic oxidation product of cysteine sulfinic acid. Acetone was used both to stop the enzymatic reaction by protein precipitation and as an organic mobile phase, making sample preparation very easy and the assay highly reproducible.  相似文献   

3.
A d-specific hydantoinase has been purified to homogeneity from Arthrobacter crystallopoietes DSM 20117 with a yield of 5% related to the crude extract. The active enzyme is a tetramer of 257 kDa consisting of four identical subunits, each with a molecular mass of 60 kDa. Incubation of the enzyme with the metal-chelating agent EDTA had no inhibitory effect, while 8-hydroxyquinoline-5-sulfonic acid resulted in a complete and irreversible inactivation. The purified enzyme contains zinc as cofactor, which could be detected by subjection to direct analysis using inductive/coupled plasma-atomic emission spectrometry. The hydantoinase has a wide substrate specificity for the d-selective cleavage of 5-monosubstituted hydantoin derivatives with aliphatic and aromatic side chains. The Vmax-value for phenylhydantoin is 217 U/mg, the Km-value is 8 mM. Dihydrouracil was found to be a natural substrate (Vmax=35 U/mg). The N-terminal amino acid sequence of the enzyme shows distinct homologies to other metal-dependent cyclic amidases involved in the nucleotide metabolism especially to dihydropyrimidinases as well as to ureases, l- and unselective hydantoinases. Due to these findings, this enzyme has to be considered as a possible link in the evolution to related l-selective and unselective hydantoinases from the genus of Arthrobacter.  相似文献   

4.
A metal-salt precipitation method with p-nitrophenyl phosphate as substrate has been used to localize in the electron microscope acid phosphatase activity in isolated aleurone layers of barley (Hordeum vulgare L.), treated for 16 h in the presence or absence of gibberellic acid (GA3). The paper confirms results obtained earlier with an azo-dye precipitation method of enzyme localization. In addition the results show for the first time that in GA3-treated tissue enzyme activity is associated with the endoplasmic reticulum (ER), there being reaction product deposited in the ER cisternae. It is suggested that this activity represents new enzyme synthesized on ER in response to GA3 and probably destined for secretion.Abbreviation ER endoplasmic reticulum  相似文献   

5.
A modification of the zinc-barium precipitation method is described for the measurement of phosphodiesterase activity. This method differs from the previous precipitation method in that it measures the appearance of the 5'-AMP product in the precipitate rather than the disappearance of the cAMP substrate from the supernatant. The method is simple, rapid, accurate and possesses a high sensitivity. It can be used to measure both the calmodulin activatable and nonactivatable forms of the enzyme. The procedure can be applied to monitoring phosphodiesterase activity throughout the purification of the enzyme from various tissues.  相似文献   

6.
Activation of phospholipase D (PLD) is involved in a number of signal transduction pathways in eukaryotic cells. The most common method for determination of PLD activity in vitro involves incubation with a radiolabeled substrate and lipid extraction followed by thin-layer chromatography in order to separate and quantify substrate and product(s). A more rapid assay can be used when utilizing phosphatidylcholine as a substrate because one of the products, choline, is water soluble and therefore easily separated from the substrate. However, this separation principle is not applicable in evaluating N-acylphosphatidylethanolamine (NAPE)-hydrolyzing PLD activity, which produces two lipophilic products, N-acylethanolamine (NAE) and phosphatidic acid. Therefore, we developed a rapid assay for the routine detection of NAPE-hydrolyzing PLD activity. This assay is based on precipitation of radiolabeled substrate (NAPE) in the presence of ZrOCl(2), followed by quantification of radiolabeled NAE released into a methanolic supernatant. The precipitation involves a chemical reaction of the zirconyl cation with the phosphate anion. Conditions were optimized for the complete precipitation of NAPE, whereas N-acyllysophosphatidylethanolamine and glycerophospho(N-acyl)ethanolamine were precipitated at least 95%. Furthermore, this precipitation method can be extended to assays of other anionic phospholipid-hydrolyzing PLD activities by selecting an optimal pH of the precipitation solution. For example, 98;-99% precipitation of phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylserine was achieved.Consequently, this new assay allows for a convenient examination of PLD activities toward a variety of phospholipid substrates, and in particular allows for the analysis of NAE formation from NAPE in vitro, a feature that will facilitate a more complete biochemical characterization of this anandamide-generating enzyme.  相似文献   

7.
The expression vector containing the full-length cDNA of human aromatic L-amino acid decarboxylase (EC 4.1.1.28) was transfected in COS cells by a modified calcium phosphate coprecipitation method. The cells transfected with plasmids that had a true direction of the cDNA gave a major immunoreactive band at 50 kDa. This expressed enzyme catalyzed the decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA), L-5-hydroxytryptophan (L-5-HTP) and L-threo-3,4-dihydroxyphenylserine. The optimal pH of the enzyme activity with L-DOPA as a substrate was 6.5, whereas the enzyme had a broad pH optimum when L-5-HTP was used as a substrate. Addition of pyridoxal phosphate to the incubation mixture greatly enhanced the activity for both L-DOPA and L-5-HTP.  相似文献   

8.
Microbial hydantoinases – industrial enzymes from the origin of life?   总被引:9,自引:0,他引:9  
Hydantoinases are valuable enzymes for the production of optically pure d- and l-amino acids. They catalyse the reversible hydrolytic ring cleavage of hydantoin or 5′-monosubstituted hydantoins and are therefore classified in the EC nomenclature as cyclic amidases (EC 3.5.2.). In the EC nomenclature, four different hydantoin-cleaving enzymes are described: dihydropyrimidinase (3.5.2.2), allantoinase (EC 3.5.2.5), carboxymethylhydantoinase (EC 3.5.2.4), and N-methylhydantoinase (EC 3.5.2.14). Beside these, other hydantoinases with known metabolic functions, such as imidase and carboxyethylhydantoinase and enzymes with unknown metabolic function, are described in the literature and have not yet been classified. An important question is whether the distinct hydantoinases, which are frequently classified as l-, d-, and non-selective hydantoinases depending on their substrate specificity and stereoselectivity, are related to each other. In order to investigate the evolutionary relationship, amino acid sequence data can be used for a phylogenetic analysis. Although most of these enzymes only share limited sequence homology (identity<15%) and therefore are only distantly related, it can be shown (i) that most of them are members of a broad set of amidases with similarities to ureases and build a protein superfamily, whereas ATP-dependent hydantoinases are not related, (ii) that the urease-related amidases have evolved divergently from a common ancestor and (iii) that they share a metal-binding motif consisting of conserved histidine residues. The difference in enantioselectivity used for the classification of hydantoinases on the basis of their biotechnological value does not reflect their evolutionary relationship, which is to a more diverse group of enzymes than was assumed earlier. This protein superfamily probably has its origin in the prebiotic conditions of the primitive earth. Received: 24 August 1998 / Received revision: 9 November 1998 / Accepted: 21 November 1998  相似文献   

9.
Recent studies have shown that aspartoacylase (ASPA), the defective enzyme in Canavan disease, is detectable in the brain only in the oligodendrocytes. Studying the regulation of ASPA is central to the understanding the pathogenesis of Canavan disease and to the development of therapeutic strategies. Toward this goal, we have developed a sensitive method for the assay of ASPA in cultured oligodendrocytes. The method involves: (a) chemical synthesis of [14C]N-acetylaspartate (NAA) from L-[14C]Asp; (b) use of [14C]NAA as substrate in the assay; and (c) separation and quantitation of the product L-[14C]Asp using a TLC system. This method can detect as low as 10pmol of product and has been optimized for cultured oligodendrocytes. Thus, this method promises to be a valuable tool for understanding the biochemical mechanisms involved in the cell-specific expression and regulation of ASPA in oligodendrocytes.  相似文献   

10.
The kinetics of bovine liver enoyl-CoA hydratase (EC 4.2.1.17) or crotonase with 2-trans-hexadecenoyl-CoA as a substrate were studied because different rates were obtained with two assay methods based on measurements of substrate utilization and product formation, respectively. L-3-Hydroxyhexadecanoyl-CoA, the product of the crotonase-catalyzed hydration of 2-trans-hexadecenoyl-CoA, was found to be a strong competitive inhibitor of the enzyme with a Ki of 0.35 microM. In contrast the short-chain product, L-3-hydroxybutyryl-CoA, is a weak competitive inhibitor with a Ki of 37 microM. L-3-Hydroxyhexadecanoyl-CoA is a much stronger inhibitor of crotonase than are other short-chain and long-chain intermediates of beta-oxidation and crotonase is more severely inhibited by this compound than are all beta-oxidation enzymes tested so far. Determination of true kinetic parameters for the crotonase-catalyzed hydration of long-chain substrates requires the removal of product in a coupled assay. When this was done, the Km for 2-trans-hexadecenoyl-CoA with bovine liver crotonase was found to be only 9 microM. It is suggested that under conditions of restricted beta-oxidation, when 3-hydroxyacyl-CoAs accumulate in mitochondria, the inhibition of crotonase by long-chain 3-hydroxyacyl-CoAs may limit the further degradation of medium-chain and short-chain intermediates of beta-oxidation.  相似文献   

11.
Synopsis A numerical method was developed for computing the steady-state concentration gradient of a diffusible enzyme reaction product in a membrane-limited compartment of a simplified theoretical cell model. In cytochemical enzyme reactions proceeding according to the metal-capture principle, the local concentration of the primary reaction product is an important factor in the onset of the precipitation process and in the distribution of the final reaction product. The following variables were incorporated into the model: enzyme activity, substrate concentration,K m, diffusion coefficient of substrate and product, particle radius and cell radius.The method was applied to lysosomal acid phosphatase. Numerical values for the variables were estimated from experimental data in the literature. The results show that the calculated phosphate concentrations inside lysosomes are several orders of magnitude lower than the critical concentrations for efficient phosphate capture found in a previous experimental model study. Reasons for this apparent discrepancy are discussed.  相似文献   

12.
Dihydroorotases are universal proteins catalyzing the third step of pyrimidine biosynthesis. These zinc metalloenzymes belong to the superfamily of cyclic amidohydrolases, comprising also other enzymes that are involved in degradation of either purines (allantoinases), pyrimidines (dihydropyrimidinases) or hydantoins (hydantoinases). The evolutionary relationships between these mechanistically related enzymes were estimated after designing a method to build an accurate multiple sequence alignment. The amino acid sequences that have been crystallized were used to build a seed alignment. All the remaining homologues were progressively added by aligning their HMM profiles to the seed HMM profile, allowing to obtain a reliable phylogeny of the superfamily. This helped us to propose a new evolutionary classification of dihydroorotases into three major types, while at the same time disentangling an important part of the history of their complex structure–function relationships. Although differing in their substrate specificity, allantoinases, hydantoinases and dihydropyrimidinases are found to be phylogenetically closer to DHOase Type I than the proximity of the three DHOase types to each other. This suggests that the primordial cyclic amidohydrolase was a multifunctional, highly evolvable generalist, with high conformational diversity allowing for promiscuous activities. Then, successive gene duplications allowed resolving the primordial substrate ambiguity in various substrate specificities. The present-day superfamily of cyclic amidohydrolases is the result of the progressive divergence of these ancestral paralogous copies by descent with modification.  相似文献   

13.
A large-scale purification procedure for phosphoglucose isomerase from pig skeletal muscle is described. It consists of two fractionations by selective precipitation and two ion exchange chromatography steps yielding an end product of approximately 900 units (micromoles of substrate converted to product per min per mg of protein, at 30 degrees) specific activity. The method separates three isoenzymic forms with an overall recovery of about 30% of the original total enzyme activity in the form of Isoenzyme III, the latter being the predominant enzyme species.  相似文献   

14.
The genes encoding hydantoinases (hyuH1) and carbamoylases (hyuC1) from Arthrobacter aurescens DSM 3745 and Arthrobacter aurescens DSM 3747 (hyuH2, hyuC2) were cloned in Escherichia coli and the nucleotide sequences determined. The hydantoinase genes comprised 1,377 base pairs and the carbamoylase genes 1,239 base pairs each. Both hydantoinases, as well as both carbamoylases, showed a high degree of nucleotide and amino acid sequence identity (96-98%). The hyuH and hyuC genes were expressed in E. coli under the control of the rhamnose promoter and the different specific activities obtained in E. coli crude extracts were compared to those produced by the original hosts. For purification the hyuH2 gene was expressed as a maltose-binding protein (MalE) and as an intein-chitin binding domain (CBD) fusion in E. coli. The expression of malE-hyuH2 resulted in the production of more soluble and active protein. With respect to temperature stability, optimal pH and optimal temperature, substrate and stereospecificity, the purified fusion enzyme exhibited properties similar to those of the wild-type enzyme.  相似文献   

15.
A direct assay method is described for L-pipecolate oxidase. The assay uses NaHSO3 to trap the L-alpha-amino [3H]adipate delta-semialdehyde (AAS) formed as a direct reaction product of L-pipecolate oxidase from L-[3H]pipecolic acid. The adduct so formed was separated from the substrate on Dowex 50 (H+) column. The product was identified as [3H]AAS by amino acid analysis after breaking down the adduct by boiling under acidic conditions. The assay is simpler and more specific than fluorometric methods; it is also more sensitive, requiring at most 16 micrograms of liver peroxisome-enriched protein per assay. We have used this assay procedure to detect L-pipecolate oxidase in skin fibroblasts obtained from a control subject and from patients of hyperpipecolic acidaemia and Zellweger syndrome and found that this enzyme activity is present in the control, but absent or decreased in the patients with the peroxisomal disorders.  相似文献   

16.
Stereospecific conversion of hydantoins into their carbamoyl acid derivatives could be achieved by using the enzyme hydantoinase. Specific hydantoinases convert either the D-form or the L-form of the hydantoin and the amino acids responsible for stereospecificity have not been identified. Structural studies on hydantoinases from a few bacterial species were published recently. The structure of a thermostable D-hydantoinase from Bacillus sp. AR9 (bar9HYD) was solved to 2.3 angstroms resolution. The usual modification of carboxylation of the active-site residue Lys150 did not happen in bar9HYD. Two manganese ions were modelled in the active site. Through biochemical studies, it was shown that mercury inhibits the activity of the enzyme. The mercury derivative provided some information about the binding site of the mercuric inhibitors and a possible reason for inhibition is presented.  相似文献   

17.
为获得具有高热稳定性的木糖异构酶,运用基因工程技术,从嗜热栖热菌Thermus thermophilus HB8中克隆到嗜热木糖异构酶基因xylA。测序结果表明,该基因与GenBank数据库中相比271位的碱基A突变为G,导致氨基酸序列中N91D突变。将该基因克隆到载体pET22b(+),并在E. coli BL21(DE3)中进行高效表达。通过热变性和强阴离子交换两步对该酶进行纯化,并对酶学性质进行了研究。结果表明,该酶最适温度为80 °C,最适pH为8.0,80 °C下半衰期为225 min。在60 °C,pH 7.5该酶的Km为15.20 mmol·L-1,Vmax为69.54 μmol·min-1,kcat为50.62 s-1,kcat/Km为3.33 L·s-1·mmol -1。研究结果为嗜热木糖异构酶的进一步工业应用奠定了基础。  相似文献   

18.
Standard enzyme immunoassays (EIAs) require washing steps to remove excess enzyme-antibody complexes. Such washing is laborious, lengthens assay time, and increases assay scatter. Recently, so-called precipitate-enhanced immunoassays (PEIAs) were introduced. Instead of color formation due to enzymatic conversion of a chromogenic substrate, this technique measures the rate of precipitate formation due to conversion of a substrate with a precipitating product. Such precipitation can be measured in the presence of active enzyme-antibody complexes in the buffer and no washing is required. In the present study this technique was used in a one-step PEIA, without washing steps, for the measurement of plasma concentrations of fatty-acid-binding protein. Horseradish peroxidase was used as tagging enzyme and diaminobenzidine as precipitating substrate. Precipitate formation was measured by ellipsometry. Assay time of the one-step PEIA was much shorter than that for an existing standard EIA. Test results can be obtained within minutes, depending on the sensitivity required. Assay precision of the one-step PEIA was better than that of the standard EIA. In the one-step assay, loss of surface-bound conjugate due to washing is prevented, which could explain part of the improved sensitivity compared to that of the two-step PEIA. More importantly, the presence of substrate-converting enzyme-antibody complexes in the buffer caused a large enhancement of precipitation.  相似文献   

19.
A method for assaying L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) which permits rate measurements with L-3-hydroxyacyl-CoA substrates of various chain lengths at physiological pH is described. The method is based on a coupled assay system in which 3-ketoacyl-CoA compounds formed by the dehydrogenase are cleaved by 3-ketoacyl-CoA thiolase (EC 2.3.1.16) in the presence of CoASH. The advantages of this assay method are its irreversibility and elimination of product inhibition. The assay procedure was used to determine the kinetic parameters (Km, Vmax) of pig heart L-3-hydroxyacyl-CoA dehydrogenase with several substrates of various chain lengths. The data obtained show the enzyme to be most active with medium-chain substrates whereas Km values for medium-chain and long-chain substrates are almost equal but much lower than those previously reported.  相似文献   

20.
Using directed evolution, we have improved the hydantoinase process for production of L-methionine (L-met) in Escherichia coli. This was accomplished by inverting the enantioselectivity and increasing the total activity of a key enzyme in a whole-cell catalyst. The selectivity of all known hydantoinases for D-5-(2-methylthioethyl)hydantoin (D-MTEH) over the L-enantiomer leads to the accumulation of intermediates and reduced productivity for the L-amino acid. We used random mutagenesis, saturation mutagenesis, and screening to convert the D-selective hydantoinase from Arthrobacter sp. DSM 9771 into an L-selective enzyme and increased its total activity fivefold. Whole E. coli cells expressing the evolved L-hydantoinase, an L-N-carbamoylase, and a hydantoin racemase produced 91 mM L-met from 100 mM D,L-MTEH in less than 2 h. The improved hydantoinase increased productivity fivefold for >90% conversion of the substrate. The accumulation of the unwanted intermediate D-carbamoyl-methionine was reduced fourfold compared to cells with the wild-type pathway. Highly D-selective hydantoinase mutants were also discovered. Enantioselective enzymes rapidly optimized by directed evolution and introduced into multienzyme pathways may lead to improved whole-cell catalysts for efficient production of chiral compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号