首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Russell AL  Woodruff RC 《Genetica》1999,105(2):149-164
We have studied both the frequency and biogeographical distribution of the transposable DNA element mariner in natural populations of Drosophila simulans and the short-term evolutionary characteristics of mariner in experimental populations. The mariner element has been identified in natural populations of D. simulans from Africa, Europe, the Middle East, Japan, Australia, several Pacific islands, North America, and South America. Only four lines out of 296 were devoid of active mariner elements, as measured by the presence of functional mariner transposase. A slight correlation was found between the latitudinal coordinate of the collection sites and the level of mariner activity in the population; this correlation became highly significant in Australia where a cline in mariner activity was observed along the eastern coast of the continent. We also observed that wild-type laboratory strains kept for several years as small populations might lose mariner activity over time. Using experimental populations, we modeled what might happen when naturally occurring populations exhibiting high and low levels of mariner activity encounter one another. We found that active mariner elements either will tend to lose their activity over time and gradually become inactive or possibly will be lost from the population; in either case, this will lead to the pattern seen in this experiment of a significant loss of mariner activity over time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A. R. Lohe  D. L. Hartl 《Genetics》1996,143(1):365-374
An important goal in molecular genetics has been to identify a transposable element that might serve as an efficient transformation vector in diverse species of insects. The transposable element mariner occurs naturally in a wide variety of insects. Although virtually all mariner elements are nonfunctional, the Mos1 element isolated from Drosophila mauritiana is functional. Mos1 was injected into the pole-cell region of embryos of D. virilis, which last shared a common ancestor with D. mauritiana 40 million years ago. Mos1 PCR fragments were detected in several pools of DNA from progeny of injected animals, and backcross lines were established. Because G(0) lines were pooled, possibly only one transformation event was actually obtained, yielding a minimum frequency of 4%. Mos1 segregated in a Mendelian fashion, demonstrating chromosomal integration. The copy number increased by spontaneous mobilization. In situ hybridization confirmed multiple polymorphic locations of Mos1. Integration results in a characteristic 2-bp TA duplication. One Mos1 element integrated into a tandem array of 370-bp repeats. Some copies may have integrated into heterochromatin, as evidenced by their ability to support PCR amplification despite absence of a signal in Southern and in situ hybridizations.  相似文献   

3.
T Jarvik  K G Lark 《Genetics》1998,149(3):1569-1574
Mariner elements, a family of DNA-mediated transposable elements with short, inverted terminal repeats, have been reported in a wide variety of arthropods, as well as planarians, nematodes, and humans. No such element has been reported in a plant. Here we report a mariner element in the plant soybean (Glycine max (L.) Merr.). Although this sequence belongs to the mariner family, it is clearly distinct from previously reported mariner-like elements, as well as from the Tc1 transposon family. Novel aspects of its sequence could be useful as a starting point to identify mariner-like elements in new organisms, and it may prove useful in creating a transformation vector for plants.  相似文献   

4.
Several copies of highly related transposable elements, Crmar2, Almar1, and Asmar1, are described from the genomes of Ceratitis rosa, Anastrepha ludens, and A. suspensa, respectively. One copy from C. rosa, Crmar2.5, contains a full-length, uninterrupted ORF. All the other copies, from the three species contain a long deletion within the putative ORF. The consensus Crmar2 element has features typical of the mariner/Tc1 superfamily of transposable elements. In particular, the Crmar2 consensus encodes a D,D41D motif, a variant of the D,D34D catalytic domain of mariner elements. Phylogenetic analysis of the relationships of these three elements and other members of the mariner/Tc1 superfamily, based on their encoded amino acid sequences, suggests that they form a new basal subfamily of mariner elements, the rosa subfamily. BLAST analyses identified sequences from other diptera, including Drosophila melanogaster, which appear to be members of the rosa subfamily of mariner elements. Analyses of their molecular evolution suggests that Crmar2 entered the genome of C. rosa in the recent past, a consequence of horizontal transfer.  相似文献   

5.
A mariner-like element was cloned from the genome of the Asiatic honey bee, Apis cerana japonica (Hymenoptera, Apocrita). The (composite) clone, named Acmar1, was 1,378 bp long, and encoded 336 amino acids corresponding to a transposase-like putative polypeptide in a single open reading frame. The D,D(34)D motif, the catalytic domain of the mariner transposase, was present, although there was a deletion of five amino acid residues within it as compared with the active transposase in Drosophila mauritiana. Nineteen-bp-long imperfect inverted terminal repeat-like sequences flanked by TA dinucleotides, the typical target site for mariner insertion, were observed. Southern blot analysis using a fragment covering two-thirds of the Acmar1 transposase coding sequence as a probe indicated the presence of multiple Acmar1-like elements in the genome. Maximum-parsimony phylogenetic analysis based on the transposase amino acid sequences of insect mariner-like elements revealed that Acmar1 is a member of the mellifera subfamily.  相似文献   

6.
Detection of de novo insertion of the medaka fish transposable element Tol2   总被引:2,自引:0,他引:2  
Koga A  Hori H 《Genetics》2000,156(3):1243-1247
Tol2 is a terminal-inverted-repeat transposable element of the medaka fish Oryzias latipes. It is a member of the hAT (hobo/Activator/Tam3) transposable element family that is distributed in a wide range of organisms. We here document direct evidence for de novo insertion of this element. A Tol2 clone marked with the bacterial tetracycline-resistance gene was microinjected into fertilized eggs together with a target plasmid, and the plasmid was recovered from embryos. The screening of plasmid molecules after transformation into Escherichia coli demonstrated transposition of tet into the plasmid and, by inference, precise insertion of Tol2 in medaka fish cells. De novo excision of Tol2 has previously been demonstrated. The present study provides direct evidence that the Tol2 element has the entire activity necessary for cut-and-paste transposition. Some elements of the mariner/Tc1 family, another widespread group, have already been applied to development of gene tagging systems in vertebrates. The Tol2 element of the hAT family, having different features from mariner/Tc1 family elements, also has potential as an alternative gene tagging tool in vertebrates.  相似文献   

7.
D. A. Lidholm  A. R. Lohe    D. L. Hartl 《Genetics》1993,134(3):859-868
A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the β-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is controlled by the promoter of the D. melanogaster gene for heat-shock protein 70, and the β-galactosidase gene is flanked upstream by the promoter of the transposable element P as well as that of mariner. The MlwB element was introduced into the germline of D. melanogaster by co-injection into embryos with an active mariner element, Mos1, which codes for a functional transposase and serves as a helper. Two independent germline insertions were isolated and characterized. The results show that the MlwB element inserted into the genome in a mariner-dependent manner with the termini of the inverted repeats inserted at a TA dinucleotide. Both insertions exhibit an unexpected degree of germline and somatic stability, even in the presence of an active mariner element in the genetic background. These results demonstrate that the mariner transposable element, which is small (1286 bp) and relatively homogeneous in size among different copies, is nevertheless capable of promoting the insertion of the large (13.2 kb) MlwB element. Because of the widespread phylogenetic distribution of mariner among insects, these results suggest that mariner might provide a wide hostrange transformation vector for insects.  相似文献   

8.
Evolution of the Transposable Element Mariner in Drosophila Species   总被引:3,自引:0,他引:3       下载免费PDF全文
K. Maruyama  D. L. Hartl 《Genetics》1991,128(2):319-329
The distribution of the transposable element mariner was examined in the genus Drosophila. Among the eight species comprising the melanogaster species subgroup, the element is present in D. mauritiana, D. simulans, D. sechellia, D. yakuba and D. teissieri, but it is absent in D. melanogaster, D. erecta and D. orena. Multiple copies of mariner were sequenced from each species in which the element occurs. The inferred phylogeny of the elements and the pattern of divergence were examined in order to evaluate whether horizontal transfer among species or stochastic loss could better account for the discontinuous distribution of the element among the species. The data suggest that the element was present in the ancestral species before the melanogaster subgroup diverged and was lost in the lineage leading to D. melanogaster and the lineage leading to D. erecta and D. orena. This inference is consistent with the finding that mariner also occurs in members of several other species subgroups within the overall melanogaster species group. Within the melanogaster species subgroup, the average divergence of mariner copies between species was lower than the coding region of the alcohol dehydrogenase (Adh) gene. However, the divergence of mariner elements within species was as great as that observed for Adh. We conclude that the relative sequence homogeneity of mariner elements within species is more likely a result of rapid amplification of a few ancestral elements than of concerted evolution. The mariner element may also have had unequal mutation rates in different lineages.  相似文献   

9.
Michel K  O'Brochta DA  Atkinson PW 《Gene》2002,298(2):141-146
Donor cleavage and strand transfer are two functions performed by transposases during transposition of class II transposable elements. Within transposable elements, the only active center described, to date, facilitating both functions, is the so-called DDE motif. A second motif, R-K-H/K-R-H/W-Y, is found in the site-specific recombinases of the tyrosine recombinase family. While present in many bacterial insertion sequences as well as in the eukaryotic family of mariner/Tc1 elements, the DDE motif was considered absent in other classes of eukaryotic class II elements such as P, and hAT and piggyBac. Based on sequence alignments of a hobo-like element from the nematode Caenorhabditis elegans, to a variety of other hAT transposases and several members of the mariner/Tc1 group, Bigot et al. [Gene 174 (1996) 265] proposed the presence of a DSE motif in hAT transposases. In the present study we tested if each of these three residues is required for transposition of the Hermes element, a member of the hAT family commonly used for insect transformation. While D402N and E572Q mutations lead to knock-out of Hermes function, mutations S535A and S535D did not affect transposition frequency or the choice of integration sites. These data give the first experimental support that D402 and E572 are indeed required for transposition of Hermes. Furthermore, this study indicates that the active center of the Hermes transposase differs from the proposed DSE motif. It remains to be shown if other residues also form the active site of this transposase.  相似文献   

10.
Barry EG  Witherspoon DJ  Lampe DJ 《Genetics》2004,166(2):823-833
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here the use of a whole-genome screen in bacteria to isolate somewhat diverged Famar1 copies from the European earwig, Forficula auricularia, that encode functional transposases. Functional and nonfunctional coding sequences of Famar1 and nonfunctional copies of Ammar1 from the European honey bee, Apis mellifera, were sequenced to examine their molecular evolution. No selection for sequence conservation was detected in any clade of a tree derived from these sequences, not even on branches leading to functional copies. This agrees with the current model for mariner transposon evolution that expects neutral evolution within particular hosts, with selection for function occurring only upon horizontal transfer to a new host. Our results further suggest that mariners are not finely tuned genetic entities and that a greater amount of sequence diversification than had previously been appreciated can occur in functional copies in a single host lineage. Finally, this method of isolating active copies can be used to isolate other novel active transposons without resorting to reconstruction of ancestral sequences.  相似文献   

11.
12.
ABSTRACT In searching the genomes of early-diverging protists to study whether the possession of calmodulin is ancestral to all eukaryotes, the gene for calmodulin was identified in Trichomonas vaginalis. This flagellate is a member of the Parabasalia, one of the earliest lineages of recognized eukaryotes to have diverged. This sequence was used to isolate a homologous 1.250-kb fragment from the T. vaginalis genome by inverse polymerase chain reaction. This fragment was also completely sequenced and shown to contain the 3' end of the single-copy calmodulin gene and the 3' end of a gene encoding a protein with high similarity to E2 ubiquitin-conjugating enzymes, a family which has previously only been identified in animals, plants, and fungi. Phylogenetic analysis of 50 members of the E2 family distinguishes at least nine separate subfamilies one of which includes the T. vaginalis E2-homologue and an uncharacterized gene from yeast chromosome XII.  相似文献   

13.
G. Bryan  D. Garza    D. Hartl 《Genetics》1990,125(1):103-114
The transposable element mariner is active in both germline and somatic cells of Drosophila mauritiana. Activity of the element is greatly enhanced in the presence of Mos1, a genetic factor identified as an autonomous copy of mariner. A strain of D. mauritiana containing Mos1 and other copies of mariner was used to initiate a screen for visible mutations. More than 20 mutations were obtained, including alleles of white, yellow and vermilion. Six alleles were characterized at the molecular level, and all were found to contain a mariner element inserted into the affected gene. Four insertions into the white locus were sequenced to determine the exact site of insertion of mariner. There appears to be little sequence specificity requirement for mariner insertion, other than an absolute requirement for the dinucleotide TA, which is duplicated upon insertion. Sequences of phenotypically wild-type germline and somatic revertants obtained from various white alleles, including the previously isolated wpch allele, were obtained using the polymerase chain reaction. Mariner excision is imprecise in both germline and soma, and the most frequent excision events are the same in the two tissues. Mutant derivatives of wpch were also studied, and were found to exhibit a wide range of molecular structures and phenotypes.  相似文献   

14.
Genetic and molecular evidence presented in this paper demonstrate that the Mos factor for inherited mosaicism is a special copy of the transposable element mariner. Mosaicism observed in the presence of the Mos (Mosaic) factor results from a high frequency of excision of the mariner element from an insertion site near the white-eye gene in Drosophila mauritiana. The Mos factor promotes the excision of mariner elements from genomic insertion sites other than the site in wpch, and it also promotes its own loss from the genome. Putative transpositions of Mos to new genomic sites have also been observed. A copy of mariner present at a particular site in a Mos strain has been shown to be missing in derived strains in which the Mos factor has been lost, and in strains with putative transpositions. We propose that this copy of mariner is identical to the Mos factor.  相似文献   

15.
Yang G  Weil CF  Wessler SR 《The Plant cell》2006,18(10):2469-2478
The Tc1/mariner transposable element superfamily is widely distributed in animal and plant genomes. However, no active plant element has been previously identified. Nearly identical copies of a rice (Oryza sativa) Tc1/mariner element called Osmar5 in the genome suggested potential activity. Previous studies revealed that Osmar5 encoded a protein that bound specifically to its own ends. In this report, we show that Osmar5 is an active transposable element by demonstrating that expression of its coding sequence in yeast promotes the excision of a nonautonomous Osmar5 element located in a reporter construct. Element excision produces transposon footprints, whereas element reinsertion occurs at TA dinucleotides that were either tightly linked or unlinked to the excision site. Several site-directed mutations in the transposase abolished activity, whereas mutations in the transposase binding site prevented transposition of the nonautonomous element from the reporter construct. This report of an active plant Tc1/mariner in yeast will provide a foundation for future comparative analyses of animal and plant elements in addition to making a new wide host range transposable element available for plant gene tagging.  相似文献   

16.
Aberrant repair products of mariner transposition occur at a frequency of approximately 1/500 per target element per generation. Among 100 such mutations in the nonautonomous element peach, most had aberrations in the 5' end of peach (40 alleles), in the 3' end of peach (11 alleles), or a deletion of peach with or without deletion of flanking genomic DNA (29 alleles). Most mariner mutations can be explained by exonuclease "nibble" and host-mediated repair of the double-stranded gap created by the transposase, in contrast to analogous mutations in the P element. In mariner, mutations in the 5' inverted repeat are smaller and more frequent than those in the 3' inverted repeat, but secondary mutations in target elements with a 5' lesion usually had 3' lesions resembling those normally found at the 5' end. We suggest that the mariner transposase distinguishes between the 5' and 3' ends of the element, and that the 5' end is relatively more protected after strand scission. We also find: (1) that homolog-dependent gap repair is a frequent accompaniment to mariner excision, estimated as 30% of all excision events; and (2) that mariner is a hotspot of recombination in Drosophila females, but only in the presence of functional transposase.  相似文献   

17.
M. Medhora  K. Maruyama    D. L. Hartl 《Genetics》1991,128(2):311-318
The white-peach allele in Drosophila results from insertion of the transposable element mariner. The particular copy that is inserted in white-peach is an inactive copy referred to as the peach element. The peach element is excised at a high rate in the presence of active copies of mariner located elsewhere in the genome, and the excision of peach in somatic cells is recognized phenotypically by the occurrence of eye-color mosaicism in white-peach flies. Active mariner elements identified by their ability to induce high levels of white-peach mosaicism are denoted Mos (Mosaic) factors. We have sequenced and functionally analyzed the factor Mos1 originally identified in Drosophila mauritiana. The Mos1 element is 1286 base pairs in length, the same length as the peach element. It differs from the peach element in 11 nucleotide positions distributed throughout its length, including four amino acid replacements in the long open reading frame. Analysis of chimeric constructs between Mos1 and peach implies that functionally important differences occur in both the 5' and 3' halves of Mos1. A mariner element identical in sequence to Mos1 yields lower levels of mosaicism in transformants, implying that adjacent flanking sequences have important effects on Mos1 activity. Another mariner element, designated Ma351, isolated from a nonmosaic strain of D. mauritiana, differs from Mos1 in just three nucleotide positions. When introduced into the germline, Ma351 yields various levels of white-peach mosaicism depending on insertion site. These results imply that the activity of mariner elements is determined jointly by their own nucleotide sequences, by the effects of adjacent flanking sequences, and by longer-range position effects.  相似文献   

18.
In cosmopolitan species, geographical variations in copy number and/or level of transposition activity have been observed for several transposable elements (TEs). Environment, history and population structure can contribute to such variation in ways that are difficult to tease apart. For the mariner element, previous studies of the geographic variation of its somatic activity in natural populations of Drosophila simulans have shown contradictory results (latitudinal clines of divergent orientations or no apparent structure). To try and resolve these inconsistencies, we gathered all available data on the mariner somatic activity of worldwide natural populations. This includes previously published results by different groups and also new data. The correlations between the level of activity and several geoclimatic factors were tested. Although no general effect of temperature was found, a relationship with the invasion history was detected. It was also shown that recent invasive populations have a higher level of activity than the putative ancestral ones. Our results strongly suggest that variability of the mariner somatic activity among natural populations of D. simulans is mainly due to populational and historical factors probably related to the recent world colonization of this species. Indeed, this activity is correlated to the main route out of Africa (the Nile route) and the recent colonization of continents such as Australia and South America.  相似文献   

19.
Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle- repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.   相似文献   

20.
Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by the 1998 Barrett nomenclature) has an unusual phylogenetic distribution, being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is largely restricted to the genus Streptomyces, although a few isolated occurrences in other bacteria have been reported. The family may be entirely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them have been from early diverging phyla like Porifera or Cnidaria. We now report the existence of Group S1A serine proteases in a sponge (phylum Porifera) and a jellyfish (phylum Cnidaria), making it safe to conclude that all animal groups possess these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号