首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li Y  Li X  Stremlau M  Lee M  Sodroski J 《Journal of virology》2006,80(14):6738-6744
Human TRIM5alpha (TRIM5alpha(hu)) only modestly inhibits human immunodeficiency virus type 1 (HIV-1) and does not inhibit simian immunodeficiency virus (SIV(mac)). Alteration of arginine 332 in the TRIM5alpha(hu) B30.2 domain to proline, the residue found in rhesus monkey TRIM5alpha, has been shown to create a potent restricting factor for both HIV-1 and SIV(mac.) Here we demonstrate that the potentiation of HIV-1 inhibition results from the removal of a positively charged residue at position 332 of TRIM5alpha(hu.) The increase in restricting activity correlated with an increase in the ability of TRIM5alpha(hu) mutants lacking arginine 332 to bind HIV-1 capsid complexes. A change in the cyclophilin A-binding loop of the HIV-1 capsid decreased TRIM5alpha(hu) R332P binding and allowed escape from restriction. The ability of TRIM5alpha(hu) to restrict SIV(mac) could be disrupted by the presence of any charged residue at position 332. Thus, charged residues in the v1 region of the TRIM5alpha(hu) B30.2 domain can modulate capsid binding and restriction potency. Therapeutic strategies designed to neutralize arginine 332 of TRIM5alpha(hu) might potentiate the innate resistance of human cells to HIV-1 infection.  相似文献   

2.
The cells of most Old World monkey species exhibit early, postentry restrictions on infection by human immunodeficiency virus type 1 (HIV-1) but not by simian immunodeficiency virus of macaques (SIV(mac)). Conversely, SIV(mac), but not HIV-1, infection is blocked in most New World monkey cells. By using chimeric HIV-1/SIV(mac) viruses capable of a single round of infection, we demonstrated that a major viral determinant of this restriction is the capsid (CA) protein. The efficiency of early events following HIV-1 and SIV(mac) entry is apparently determined by the interaction of the incoming viral CA and species-specific host factors.  相似文献   

3.
By using replication-defective vectors derived from human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV(mac)), and murine leukemia virus (MuLV), all of which were pseudotyped with the vesicular stomatitis virus (VSV) G glycoprotein, the efficiency of postentry, early infection events was examined in target cells of several mammalian species. Titers of HIV-1 vectors were significantly lower than those of SIV(mac) and MuLV vectors in most cell lines and primary cells from Old World monkeys. By contrast, most New World monkey cells exhibited much lower titers for the SIV(mac) vector compared with those of the HIV-1 vector. Prosimian cells were resistant to both HIV-1 and SIV(mac) vectors, although the MuLV vector was able to infect these cells. Cells from other mammalian species were roughly equivalent in susceptibility to the three vectors, with the exception of rabbit cells, which were specifically resistant to the HIV-1 vector. The level of HIV-1 vector expression was very low in transduced cells of rodent, rabbit, cow, and pig origin. Early postentry restriction of primate immunodeficiency virus infection exhibits patterns largely coincident with species borders and applies to diverse cell types within an individual host, suggesting the involvement of species-specific, widely expressed cellular factors.  相似文献   

4.
The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.  相似文献   

5.
Hybrid viruses between human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus strain mac (SIV(MAC)) are invaluable to various fields of HIV-1 research. To date, however, no replication-competent HIV-1 strain containing the gag capsid (CA) region of SIV(MAC) has been reported. To obtain the viable gag gene chimeric virus in an HIV-1 background, seven HIV-1 strains carrying a part of SIV(MAC) CA or a small deletion in the CA region were constructed and examined for their biological and biochemical characteristics. While all the recombinants and mutants were found to express Gag and to produce progeny virions on transfection, only one chimeric virus, which has 18 bp of SIV gag CA sequence in place of the region encoding the HIV-1 CA cyclophilin A (CyPA)-binding loop, was infectious for human cell lines. Although this chimeric virus was unable to grow in monkey lymphocytic cells like wild-type (wt) HIV-1 did, it grew much better than wt virus in the presence of cyclosporin A in a human cell line which supports HIV-1 replication in a CyPA-dependent manner. These results indicate that the transfer of a small portion of the SIV(MAC) CA region to HIV-1 could confer the CyPA-independent replication potential of SIV(MAC) on the virus.  相似文献   

6.
7.
The TRIM5alpha proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5alpha orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5alpha proteins functionally resembled human TRIM5alpha, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5alpha proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5alpha, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5alpha B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5alpha proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5alpha proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) specifically incorporates the host cell peptidyl-prolyl isomerase cyclophilin A into virions via contacts with the capsid (CA) domain of the Gag polyprotein Pr55gag. The immunosuppressant drug cyclosporin A and the nonimmunosuppressive cyclosporin A analog SDZ NIM 811 bind to cyclophilin A and inhibit its incorporation into HIV-1 virions. Both drugs inhibit the virion association of cyclophilin A and the replication of HIV-1 with a similar dose dependence. In contrast, these compounds are inactive against other primate lentiviruses which do not incorporate cyclophilin A, such as simian immunodeficiency virus (SIV). To locate determinants which confer sensitivity to SDZ NIM 811, we generated chimeric proviruses between HIV-1 and SIVmac. A hybrid SIVmac which has the CA-p2 domain of the Gag polyprotein replaced by the corresponding domain from HIV-1 replicated in an established CD4+ cell line and in human but not macaque peripheral blood mononuclear cells. The transfer of the HIV-1 CA-p2 domain to SIVmac led to the efficient incorporation of cyclophilin A, and SDZ NIM 811 effectively inhibited both the virion association of cyclophilin A and the spread of the hybrid virus in infected cultures. We conclude that the HIV-1 CA-p2 domain contains determinants which confer the necessity to interact with cyclophilin A for efficient virus replication. Furthermore, our data show that the CA-p2 domain can play a crucial role in species tropism.  相似文献   

9.
TRIM5alpha is an important mediator of antiretroviral innate immunity influencing species-specific retroviral replication. Here we investigate the role of the peptidyl prolyl isomerase enzyme cyclophilin A in TRIM5alpha antiviral activity. Cyclophilin A is recruited into nascent human immunodeficiency virus type 1 (HIV-1) virions as well as incoming HIV-1 capsids, where it isomerizes an exposed proline residue. Here we show that cyclophilin A renders HIV-1 sensitive to restriction by TRIM5alpha in cells from Old World monkeys, African green monkey and rhesus macaque. Inhibition of cyclophilin A activity with cyclosporine A, or reducing cyclophilin A expression with small interfering RNA, rescues TRIM5alpha-restricted HIV-1 infectivity. The effect of cyclosporine A on HIV-1 infectivity is dependent on TRIM5alpha expression, and expression of simian TRIM5alpha in permissive feline cells renders them able to restrict HIV-1 in a cyclosporine A-sensitive way. We use an HIV-1 cyclophilin A binding mutant (CA G89V) to show that cyclophilin A has different roles in restriction by Old World monkey TRIM5alpha and owl monkey TRIM-Cyp. TRIM-Cyp, but not TRIM5alpha, recruits its tripartite motif to HIV-1 capsid via cyclophilin A and, therefore, HIV-1 G89V is insensitive to TRIM-Cyp but sensitive to TRIM5alpha. We propose that cyclophilin A isomerization of a proline residue in the TRIM5alpha sensitivity determinant of the HIV-1 capsid sensitizes it to restriction by Old World monkey TRIM5alpha. In humans, where HIV-1 has adapted to bypass TRIM5alpha activity, the effects of cyclosporine A are independent of TRIM5alpha. We speculate that cyclophilin A alters HIV-1 sensitivity to a TRIM5alpha-independent innate immune pathway in human cells.  相似文献   

10.
11.
12.
Zhang Y  Lou B  Lal RB  Gettie A  Marx PA  Moore JP 《Journal of virology》2000,74(15):6893-6910
We have used coreceptor-targeted inhibitors to investigate which coreceptors are used by human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency viruses (SIV), and human immunodeficiency virus type 2 (HIV-2) to enter peripheral blood mononuclear cells (PBMC). The inhibitors are TAK-779, which is specific for CCR5 and CCR2, aminooxypentane-RANTES, which blocks entry via CCR5 and CCR3, and AMD3100, which targets CXCR4. We found that for all the HIV-1 isolates and all but one of the HIV-2 isolates tested, the only relevant coreceptors were CCR5 and CXCR4. However, one HIV-2 isolate replicated in human PBMC even in the presence of TAK-779 and AMD3100, suggesting that it might use an undefined, alternative coreceptor that is expressed in the cells of some individuals. SIV(mac)239 and SIV(mac)251 (from macaques) were also able to use an alternative coreceptor to enter PBMC from some, but not all, human and macaque donors. The replication in human PBMC of SIV(rcm) (from a red-capped mangabey), a virus which uses CCR2 but not CCR5 for entry, was blocked by TAK-779, suggesting that CCR2 is indeed the paramount coreceptor for this virus in primary cells.  相似文献   

13.
We had previously predicted successfully the minimal fusion peptides (FPs) of the human immunodeficiency virus 1 (HIV-1) gp41 and the bovine leukemia virus (BLV) gp30 using an original approach based on the obliquity/fusogenicity relationship of tilted peptides. In this paper, we have used the same method to predict the shortest FP capable of inducing optimal fusion in vitro of the simian immunodeficiency virus (SIV) mac isolate and of other SIVs and human immunodeficiency virus (HIV-2) isolates. In each case, the 11-residue-long peptide was predicted as the minimal FP. For the SIV mac isolate, liposome lipid-mixing and leakage assays confirmed that this peptide is the shortest peptide inducing optimal fusion in vitro, being therefore the minimal FP. These results are another piece of evidence that the tilted properties of FPs are important for the fusion process and that our method can be used to predict the minimal FPs of other viruses.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates HLA-A and -B molecules, but not HLA-C or -E molecules, based on amino acid differences in their cytoplasmic domains to simultaneously evade cytotoxic T lymphocyte (CTL) and natural killer cell surveillance. Rhesus macaques and sooty mangabeys express orthologues of HLA-A, -B, and -E, but not HLA-C, and many of these molecules have unique amino acid differences in their cytoplasmic tails. We found that these differences also resulted in differential downregulation by primary simian immunodeficiency virus (SIV) SIV(smm/mac) and HIV-2 Nef alleles. Thus, selective major histocompatibility complex class I downregulation is a conserved mechanism of immune evasion for pathogenic SIV infection of rhesus macaques and nonpathogenic SIV infection of sooty mangabeys.  相似文献   

15.
16.
The V1 and V2 variable regions of the primate immunodeficiency viruses contribute to the trimer association domain of the gp120 exterior envelope glycoprotein. A pair of V2 cysteine residues at 183 and 191 (“twin cysteines”) is present in several simian immunodeficiency viruses, human immunodeficiency virus type 2 (HIV-2) and some SIVcpz lineages, but not in HIV-1. To examine the role of this potentially disulfide-bonded twin-cysteine motif, the cysteine residues in the SIVmac239 envelope glycoproteins were individually and pairwise substituted by alanine residues. All of the twin-cysteine mutants exhibited decreases in gp120 association with the Env trimer, membrane-fusing activity, and ability to support virus entry. Thus, the twin-cysteine motif plays a role in Env trimer stabilization in SIV and may do so in HIV-2 and some SIVcpz as well. This implies that HIV-1 lost the twin-cysteines, and may have relatively unstable Env trimers compared to SIV and HIV-2.  相似文献   

17.
Short amino acid sequences in the cytosolic domains of transmembrane proteins are recognized by specialized adaptor [corrected] proteins which are part of coated vesicles utilized to transport membrane proteins between the trans-Golgi network (TGN) and the plasma membrane (forward and backward). Previously, we and others reported that the membrane-proximal tyrosine residues Y712 (human immunodeficiency virus [HIV]) and Y721 (simian immunodeficiency virus [SIV]) in the envelope glycoprotein (Env) of the primate lentiviruses are crucial for the association of Env with clathrin-associated adaptor [corrected] complex AP-2. The same tyrosine-based endocytosis motifs in the cytosolic domains (EnvCD) of transmembrane gp41 of HIV type 1 (HIV-1) and SIV, respectively, were also shown to modulate the interaction with TGN- and endosome-based clathrin-associated complex AP-1. Our findings suggested that EnvCD binding to AP-1, unlike the association of EnvCD with AP-2, is dependent largely on residues other than Y712 and Y721. Here, we tested if motifs downstream of Y712 affect HIV-1 EnvCD-AP-1 binding and Env trafficking. Mutational analysis revealed that the C-terminal leucine-based motif in Env was crucial for the recruitment of AP-1 in vitro and in Env-expressing cells. In addition to affecting Env-AP-1 association, mutations at the C terminus of Env also altered the subcellular localization of Env, suggesting that proper post-Golgi routing of Env depends on its recruitment of AP-1. Finally, the C-terminal dileucine was shown to assist the membrane-proximal Y712 motif in restricting the cell surface expression of Env.  相似文献   

18.
Murine primary cells are poorly permissive to human immunodeficiency virus type 1 (HIV-1) vector infection. Retroviral infectivity is influenced by dominant inhibitors such as TRIM5alpha. Sensitivity to TRIM5alpha is altered by interactions between cyclophilin A and the HIV-1 capsid. Here we demonstrate that competitive inhibitors of cyclophilins, cyclosporine or the related Debio-025, stimulate HIV-1 vector transduction of primary murine cells, including bone marrow and macrophages, up to 20-fold. Unexpectedly, the infectivity of an HIV-1 mutant or a simian lentivirus that does not recruit cyclophilin A is also stimulated by these drugs. We propose that cyclosporine and related compounds will be useful tools for experimental infection of murine primary cells. It is possible that HIV-1 infection of murine cells is inhibited by dominant factors related to immunophilins.  相似文献   

19.
Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregulate class I MHC requires a unique C-terminal region of the SIV mac239 Nef molecule which is not found in HIV-1 Nef. Interestingly, mutation of the PxxP motif in SIV Nef, unlike in HIV-1 Nef, does not affect class I MHC downregulation. We also found that downregulation of class I MHC by SIV Nef requires a conserved tyrosine in the cytoplasmic domain of the class I MHC heavy chain and involves accelerated endocytosis of class I complexes, as previously found with HIV-1 Nef. Thus, while SIV and HIV-1 Nef proteins use a similar mechanism to downregulate class I MHC expression, they have evolved different surfaces for molecular interactions with cell factors that regulate class I MHC traffic. Mutations in the C-terminal domain of SIV mac239 Nef selectively disrupt class I MHC downregulation, having no detectable effect on other functions of Nef, such as the downregulation of CD4 and CD3 surface expression, the stimulation of SIV virion infectivity, and the induction of SIV replication from T cells infected in the absence of stimulation. The resulting mutants will be useful reagents for studying the importance of class I MHC downregulation for SIV replication and AIDS pathogenesis in infected rhesus macaques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号