首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

2.
Evoked potentials to somatic and visual stimuli were recorded in the parafascicular complex (parafascicular nuclei--centrum medianum--Pf--CM) of the thalamus of cats anaesthetized by nembutal. Cooling of the motor cortex was also used. The influence of the motor cortex on processing of the visual and somatic afferent signals at the thalamic level was found to be direct but different by its character. The motor cortex exerted unidirectional facilitatory modulatory action of a tonic type on the processing of visual afferentation and general facilitatory influence against the background of which particular excitatory and inhibitory effects were seen which it exerted on the processing of somatic signals. Episodically the motor cortex completely controlled the afferent inputs activated by somatic impulses. The motor cortical area non-equally influenced afferentation of the same modality forming the different components of the evoked potentials in Pf--CM. On the base of our present and earlier obtained data an idea has been formed of existence of a general principle of differentiated influences of polysensory areas on heterogeneous afferentation on nonspecific and association thalamic nuclei, and of realization of these influences through separation of functionally isolated subsystems in descending pathways. Each of the subsystems by closing separate thalamo-cortical circuits might transmit signals of a single modality.  相似文献   

3.
In acute experiments on cats evoked potentials (EP) of the orbital cortex were recorded and the electrogenesis and functional purpose of individual components of associative responses (AR) were investigated. It was concluded that the initial negative fluctuation of the AR arises as a consequence of the physical propagation of potentials from the projection somatosensory cortex and the second, positive, component and the following negative component are the result of arrival of an afferent volley into the orbital cortex via specific thalamic nuclei. These two components are due to activation of neurons of the orbital cortex. The afterdischarge, which appears sometimes, develops under the effect of impulses arriving from nonspecific thalamic nuclei. It is shown that during the second, positive, phase of the AR, primarily afferent neurons are activated, and during the negative phase, efferent neurons of the orbital cortex. The afterdischarge, which complicates the negative phase of the AR, is due to inhibition of afferent neurons.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 384–390, July–August, 1970.  相似文献   

4.
A comparative analysis of monosynaptic afferent and efferent connections of callosal neurons and target neurons of transcallosal fibers with neurons of the specific ipsilateral thalamic nuclei (ventral posterolateral, ventral posteromedial, ventral lateral, and anteroventral) was undertaken on the sensomotor cortex of unanesthetized rabbits, using an electrophysiological method. Differences were demonstrated between callosal neurons and target neurons of transcallosal fibers with respect to monosynaptic inputs from the thalamic nuclei and pathways proceeding toward these structures and (or) entering the pyramidal tract. Among target neurons, compared with callosal neurons, more cells had descending projections (54 and 14%, respectively). Monosynaptic action potentials arose in 22% of target neurons in response to stimulation of specific thalamic nuclei, whereas no such responses occurred in callosal neurons. Projections of target neurons into thalamic nuclei were shown to be formed both by independent fibers and by axon collaterals of the pyramidal tract. It is postulated that the distinctive properties thus discovered indicate significantly greater convergence of influence of thalamic relay neurons on the target neurons; this determines differences known to exist in characteristics of receptive fields and spontaneous and evoked activity of callosal neurons, on the one hand, and of neurons excited synaptically by transcallosal stimulation, on the other hand.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 305–314, May–June, 1985.  相似文献   

5.
Effects of repetitive stimulation of the locus coeruleus on spinal responses to activation of cortico-, reticulo-, and vestibulospinal tracts were studied in decerebellate cats anesthetized with chloralose. Descending influences of these structures were assessed from changes in amplitude of extensor and flexor monosynaptic discharges or from the magnitude of postsynaptic potentials recorded from the corresponding motoneurons. Stimulation of the motor cortex or modullary reticular formation as a rule evoked two-component inhibitory responses in extensor motoneurons and excitatory-inhibitory responses in flexor motoneurons. Stimulation of locus coeruleus effectively depressed the amplitude of the late component and, to a lesser degree, that of the early component of inhibition arising after stimulation of the cerebral cortex or reticular formation. During stimulation of the locus coeruleus no marked changes were found in inhibitory responses evoked by vestibulospinal influences in flexor motoneurons, and also in excitatory responses arising after stimulation of the above-mentioned descending pathways in both groups of motoneurons.  相似文献   

6.
Under conditions of partial suppression of GAMKA-dependent cortical inhibition in the motor cortex of anesthetized cats, a weak electrical stimulation of the pyramidal tract evoked the late slow (50-200 ms) excitatory reactions in the motor cortex neurons similar to those previously recorded under the same conditions in response to stimulation of the parietal cortex. This finding favors the proposal that the late excitatory component of the cortico-cortical response reflects the repetitive activation of cortical neurons due to excitation spread via the system of cortical recurrent excitatory collaterals.  相似文献   

7.
Intracellular activity was recorded from the functionally identified motor cortex neurons (MI, area 4) in acute experiments on myorelaxin-immobilized cats under calypsol anesthesia. Changes in neuronal responses to testing stimulation of the ventrolateral thalamic nucleus or pyramidal tract fibers were studied; the same or another input was used for a conditioning stimulation. Excitatory and inhibitory components of test responses of variousMI neurons were found to be either facilitated or depressed. The facilitation of orthodromic excitation was more frequent in the case of thalamic testing stimulation. The depression of both excitatory and inhibitory components of the response was more pronounced with paired stimulation of the pyramidal tract fibers. The peculiarities of interaction between direct afferent and recurrent signals in theMI neurons are thought to be determined by different distribution of thalamocortical fiber terminals and recurrent collaterals of corticofugal axons in the cortex and nonuniform localization of their synapses on dendrites and somata of the studied cells. It seems possible that these peculiarities also are connected with different chemical mechanisms of synaptic transmission in the above synapses and different properties of postsynaptic membrane receptors.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 203–210, May–June, 1994.  相似文献   

8.
Acute experiments on immobilized cats lightly anesthetized with pentobarbital showed that application of strychine to the cortical surface inhibits slow negative potentials arising during direct and primary responses of the sensomotor cortex and corresponding IPSPs in pyramidal neurons. Iontophoretic applications of strychine blocks predominantly the early component of the IPSP, during which the input resistance under normal conditions is significantly less than during the late component of the IPSP, indicating that these components differ in their genesis. It is concluded that individual components of cortical evoked potentials have a common genesis, and that the slow negative potential is the dipole reflection of the IPSP in pyramidal neurons; the early component of the IPSP, moreover, is generated as a result of activation of axo-somatic inhibitory synapses, whereas the late component is generated as a result of activation of axo-dendritic synapses. The mediators in these inhibitory synapses may be different.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 480–487, July–August, 1984.  相似文献   

9.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

10.
Antidromic and monosynaptic unit responses to the stimulation of the corpus callosum and the symmetrical cortical area as well as antidromic responses to pyramidal tract and thalamic nuclei stimulation were recorded in the sensorimotor cortex of unanaesthetized rabbits. Out of 182 callosal neurones 13 exhibited transcallosal monosynaptic responses. 8 out of 56 callosal units responded antidromically to pyramidal tract or thalamic stimulation. Thus callosal neurones may be monosynaptically excited by callosal units via the corpus callosum and by the pyramidal tract units. It was also found that a pyramidal tract neurone may send a collateral through the corpus callosum and at the same time have a transcallosal monosynaptic input. The role of monosynaptic transcallosal excitation of callosal neurones is discussed.  相似文献   

11.
The minimal doses of thiopental sodium (TS) to suppress each of seven varieties of cortical evoked potentials tested were determined in experiments on cats. The preparation had the strongest effect on the following responses: interzonal, arising in the motor cortex to stimulation of somatosensory area I; the reflex pyramidal and late components of the direct pyramidal response. The oligosynaptic transcallosal potential is less sensitive than the above responses but more so than the callosal response. The action of TS on the response depends on the complexity of its organization. The level at which the given cortical response takes place must also be considered. Comparison of the action of TS on the I1 wave of the pyramidal response and on the dendritic component of the direct cortical response showed that, given equal complexity of its organization, the response arising in deep layers of the cortex is depressed more by TS than the response arising wholly at the level of surface layer I.Institute of Pharmacology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 264–271, May–June, 1972.  相似文献   

12.
Intracellularly injected tumor promoter phorbol esters (PhEs) that activate protein kinase C (PKC) increased the excitability and altered the postsynaptic responses of neurons of the motor cortex of awake cats. PhEs increased the amplitude and duration of EPSPs and decreased the amplitude and durations of IPSPs. No consistent changes in resting membrane parameters that would account for these modifications were found. Corresponding changes in peak excitatory and inhibitory postsynaptic currents (EPSCs, IPSCs) were measured directly with the single electrode voltage clamp technique. The changes lasted for 50 min or longer. Quantitative analysis of EPSCs in response to ventrolateral thalamic stimulation and IPSCs in response to pyramidal tract stimulation made in a subgroup of fast PT cells suggested that PhE acted within the injected neuron rather than presynaptically to alter the synaptic currents. PhE also reduced a voltage-dependent, 3-aminopyridine sensitive fast outward current (IA) and an apamin and EGTA sensitive slow outward current (IK(Ca]. Control injections of a phorbol ester that did not activate PKC failed to induce changes in synaptic responses or resting membrane properties. These observations provide the first evidence that activation of PKC, in vivo, can induce long-lasting changes in synaptic responses of neocortical neurons by direct modification of postsynaptic ion channel conductivities.  相似文献   

13.
Responses of 189 neurons of the somatosensory cortex to stimulation of the nonspecific reticular (R) and anteroventral (AV) nuclei of the thalamus were studied in cats anesthetized with thiopental and immobilized with tubocurarine. In the series of experiments with stimulation of R and, for comparison, of the specific ventral posterolateral nucleus (VPL), 132 neurons were recorded, of which 22 (16.7%) did not respond to stimulation of these nuclei, 77 (58.3%) responded only to stimulation of VPL, and 33 (25%) responded to stimulation of both VPL and R. In the series of experiments in which AV was stimulated, 57 neurons were recorded. Eight (14.8%) responded to neither stimulus and 25 (43.1%) responded only to stimulation of VPL; 24 responded to stimulation of AV (42.1%), and of these, 10 also responded to stimulation of VPL. A characteristic feature of unit responses in the somatosensory cortex to stimulation of the nonspecific nuclei was the irregularity of the responses and their longer latent period. Only five cells responded sooner to stimulation of the nonspecific nuclei than to stimulation of VPL. Responses of the nonspecific nuclei to stimulation appeared clearly only if the stimulation was repetitive. Preliminary stimulation of R blocks the response to stimulation of VPL during the subsequent 40–60 msec.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol.4, No.4, pp. 384–390, July–August, 1972.  相似文献   

14.
The dynamics of evoked potentials during blocking of cholinergic cortical structures was investigated in unanesthetized cats. Application of the anticholinergic drug benactyzine inhibits the negative phases of cortical responses to stimulation of the reticular formation and non-specific thalamic nuclei and also of responses to direct cortical stimulation. Direct cortical responses (DCRs), inverted by -aminobutyric acid, are also depressed, indicating the role of cholinergic mechanisms in the genesis of these responses. During blocking of cholinergic synapses, negative phases of the primary response (PR) and response to stimulation of the specific thalamic nucleus are facilitated. A tendency is then observed toward grouping of spontaneous unit discharges and abolition of inhibition of cortical neurons produced by high-frequency stimulation of the reticular formation. One cause of the increase in amplitude of the primary response (PR) to the action of anticholinergic drugs may be widening of the zone of cortical neurons involved in the response because of abolition of the localizing effect of inhibitory neurons.Institute of Physiology, Siberian Division, Academy of Sciences of the USSR, Novosibirsk. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 406–411, July–August, 1970.  相似文献   

15.
Evoked potentials, represented by population spikes and slow waves, have been recorded from the subiculum, along its whole dorso-ventral extent, following postsynaptic activation and discharge of hippocampal pyramidal neurons. These potentials can be associated with synaptic excitatory effects generated on radially oriented neurons by hippocampal impulses reaching the subiculum at any dorso-ventral level, according to a segmental organization.  相似文献   

16.
 Evoked potentials – the brain's transient electrical responses to discrete stimuli – are modeled as impulse responses using a continuum model of brain electrical activity. Previous models of ongoing brain activity are refined by adding an improved model of thalamic connectivity and modulation, and by allowing for two populations of excitatory cortical neurons distinguished by their axonal ranges. Evoked potentials are shown to be modelable as an impulse response that is a sum of component responses. The component occurring about 100 ms poststimulus is attributed to sensory activation, and this, together with positive and negative feedback pathways between the cortex and thalamus, results in subsequent peaks and troughs that semiquantitatively reproduce those of observed evoked potentials. Modulation of the strengths of positive and negative feedback, in ways consistent with psychological theories of attentional focus, results in d istinct responses resembling those seen in experiments involving attentional changes. The modeled impulse responses reproduce key features of typical experimental evoked response potentials: timing, relative amplitude, and number of peaks. The same model, with further modulation of feedback, also reproduces experimental spectra. Together, these results mean that a broad range of ongoing and transient electrocortical activity can be understood within a common framework, which is parameterized by values that are directly related to physiological and anatomical quantities. Received: 22 May 2001 / Accepted in revised form: 8 January 2002  相似文献   

17.
The intracellular activity of pyramidal tract neurons was studied during electrical stimulation of ventrolateral and ventroposterolateral thalamic nuclei in acute experiments on cats immobilized by myorelaxants. Somatic action potentials were observed and spontaneous spikes were also produced by single and rhythmic stimulation of the thalamic nuclei at the rate of 8–14 Hz, by iontophoretic application of strychnine, and by intracellular depolarizing current pulses. These potentials had a relatively low and variable amplitude of 5–60 mV and are presumed to be dendritic action potentials. It is postulated that these variable potentials arise in the dendrites of pyramidal neurons with multiple zones generating such activity. No interaction was observed where somatic and dendritic action potentials occur simultaneously. The possible functional role of dendritic action potentials is discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 435–443, July–August, 1986.  相似文献   

18.
The thalamic relays for the conduction of impulses arising during photic stimulation of the eyes and electrical stimulation of the tectum in the general cortex, hyperstriatum (the dorsal ventricular ridge), and the striatum proper were studied in the turtleEmys orbicularis. Acute experiments on immobilized animals showed that anodal polarization temporarily and destruction of n. rotundus irreversibly suppress the main negative wave of the responses to tectal stimulation and to flashes in the hyperstriatum, whereas the corresponding responses in the general cortex still persist. Polarization and destruction of the lateral thalamic region, including the lateral geniculate body, have the opposite effect: responses in the hyperstriatum to photic and tectal stimulation are virtually unchanged whereas those in the general cortex disappear, except their late components. Preceding single stimulation of the tectum or n. rotundus depresses responses in the hyperstriatum evoked by flashes. However, during stimulation of the lateral thalamic region, combined potentials and single unit responses appear in the hyperstriatum and interact with responses evoked by tectal stimulation. It is concluded that the main pathways in turtles which supply visual information to the general cortex and hyperstriatum differ: the former relay in the lateral thalamic region, the latter in n. rotundus, although some overlapping of their projections in the hyperstriatum and striatum is possible.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 486–494, September–October, 1977.  相似文献   

19.
Neuronal responses of the parietal associate cortex (field 5) was recorded in waking cat during electrical stimulation of the pyramidal tract axons and afferent stimulation. The electrical stimulation of the pyramid evoked marked responses in 39% of neurons. 87% of these neurons increased spike activity during sematic nociceptive stimulation, 61% of test neurons were activated by light or tonal stimulation. Neuronal activity was recorded during defensive conditioning to the pyramidal tract axons stimulation. It has been shown that conditioned stimulation of the pyramidal tract evoked plastic changes of responses in 66% of neurons of the parietal cortex. These data are discussed relative to the possible functional role of the efferent-afferent interaction to field 5.  相似文献   

20.
Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号