首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
ABSTRACT. Photoperiodic control of facultative reproductive diapause was examined in females of the phytoseiid mite, Amblyseius potentillae (Garman). Full diapause was induced by rearing the mites from egg to adult under short-day photoperiods. Egg-laying females, however, which had experienced a long-day photoperiodic regime during pre-imaginal development, could still be induced to enter diapause when they were transferred to a short-day regime. Diapause development proceeded slowly under a short-day photoperiod, but was accelerated under long days. During diapause development under short days the photoperiodic sensitivity of the females diminished gradually and ultimately disappeared completely. However, after completion of diapause, sensitivity to photo-period reappeared. A second diapause could be induced in post-diapause females under short-day photoperiods and completed again under long-day photoperiods. These results show that A. potentillae remains sensitive to diapause-inducing and diapause-averting daylengths during the adult stage and that a second diapause may be induced after completion of the first one.  相似文献   

2.
Four experiments examined the role of photoperiod in the regulation of seasonal breeding in the prairie vole. Adult male voles maintained in short (8L:16D) as compared to long (16L:8D) photoperiods for 10 wk had reduced testicular and seminal vesicle weights, but fertility was not impaired. Male prairie voles reared from birth until 35 days of age in short as compared to long photoperiods also had reduced testicular and seminal vesicle weights, as well as diminished fertility. The incidence of pregnancy did not differ between long- and short-day female voles paired for 6 days with long- or short-day males (93%, 86%, 89%, and 88%, respectively). Photoperiod did not affect the incidence or the timing of postpartum pregnancies in long- or short-day females paired with long-day males through the birth of several litters. Adult male prairie voles retain only marginal sensitivity to short photoperiods, maturing males are highly responsive to short days, and adult females are insensitive to photoperiod. These data suggest that termination of the breeding season in the autumn may be due to the lack of fecund males in the population.  相似文献   

3.
The concept of critical day length is well established among rodents; reproductive function is maintained when day lengths are greater than some specific threshold. In addition to day length cues, seasonal breeding in deer mice can also be regulated by food availability. The caloric threshold necessary to support reproduction remains unspecified for seasonally breeding rodents. The present study examined the interaction between photoperiod and food availability on reproductive function in adult male deer mice (Peromyscus maniculatus). A critical caloric intake profile was constructed in long (16L:8D) and short (8L:16D) photoperiods; groups of deer mice in both photoperiods either received food ad libitum or 90, 80, or 70% of their individual ad libitum food intake for 10 wk. At autopsy, paired testes, epididymides, and seminal vesicles were removed and weighed. Body mass, total body fat, and total body water contents were also obtained. Short, as compared to long, day lengths inhibited the reproductive systems of male deer mice. However, food consumption interacted with photoperiod to affect reproductive function. Significant reductions in reproductive organ size as well as spermatogenic activity were observed among short-day mice after a 10% reduction in ad libitum food intake. Long-day animals required a 20% reduction in caloric intake to depress reproductive function. Body mass and total body water content were generally unaffected by either photoperiod or food consumption. Total body fat content was reduced in short- as compared to long-day mice. Individual reproductive responsiveness to short days increased as food availability decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Transfer of adult Siberian hamsters (Phodopus sungorus) from long (16 h light and 8 h dark, 16L:8D) to short (8L:16D) daily photoperiods induces an involution of the gonads and a cessation of reproductive behavior 8 to 10 weeks later. However, when male and female long-day hamsters were paired on transfer to short photoperiods, the males' gonads did not undergo the typical short-day response. Similarly, when male long-day hamsters were paired with refractory females (i.e., females housed in short photoperiods for at least 28 weeks so that they became unresponsive to short photoperiods), the response of the males' reproductive system to short photoperiods also was attenuated. Thus, social cues can override or delay the effects of photoperiod on the testes of this species. These results suggest that the inhibitory effects of long durations of melatonin secretion (in response to short photoperiods) on the male hypothalamic-pituitary-gonadal axis may be attenuated by social cues such as contact with the opposite sex.  相似文献   

5.
Spring-born female lambs require a decrease in day length for the normal timing of puberty the following autumn. If this decrease occurs early in postnatal life (i.e. 0-10 weeks), puberty is delayed. This study tested the hypothesis that failure of the neonatal lamb to respond to the critical long-day to short-day signal is due to inadequate nocturnal melatonin secretion. The approach was to artificially increase, to adult levels, the low nighttime rises of melatonin during the early postnatal period. Eight female lambs served as controls; they were raised on short days until 17 wk of age, and then exposed to 5 wk of long days, after which they were returned to short days. This alternating sequence of photoperiods during mid-development would be expected to induce normal puberty. Sixteen experimental females were exposed to the critical block of long days much earlier; they were placed in long days between 2 and 7 wk of age and in short days thereafter. Half (n = 8) received no further treatment. The other half (n = 8) were infused nightly with melatonin during the 8-h dark phase of the 5-wk, long-day photoperiod. This increased the amplitude of the natural nighttime melatonin rises 3- to 4-fold, well into the adult range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Peripubertal reproductive development of Siberian hamsters is influenced by photoperiodic information received during gestation; the maternal pineal is important for this process. We observed that in the absence of the maternal pineal, the fetus appears to receive no information about gestational photoperiods. This is not the equivalent of receipt of a long-day signal by the fetus. Pinealectomized and sham-operated pregnant females were exposed to photoperiods of 12L:12D, 14L:10D, 16L:8D, or constant light (LL); young were reared from birth to 28 days of age in LL or 14L:10D. Regardless of the gestational photoperiod, LL-reared male young born to pinealectomized dams had smaller testes than LL-reared young of pineal-intact dams exposed to 16L:8D while pregnant. Thus, pinealectomy did not result in transmission of a long-day signal, nor did young born of pinealectomized dams receive short- or intermediate-day signals. Unlike young of pineal-intact females exposed to 12L:12D or 14L:10D while pregnant, young born of pinealectomized dams had small testes when reared in 14L:10D, irrespective of gestational photoperiod. Uterine weights of female young presented similar patterns of responses. In a second experiment, adult females were entrained to 12L:12D, 14L:10D, or 16L:8D for 3 wk prior to pinealectomy to determine if the effect of maternal pinealectomy would be altered. Entrainment to the new photoperiod prior to surgery did not alter the effects of maternal pinealectomy.  相似文献   

7.
Female adults of the rice leaf bug Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) produce non-diapause eggs under long-day conditions, whereas they produce diapause eggs under short-day conditions. These egg-production modes change following a photoperiodic change from long-day to short-day conditions or vice versa, with individual variations in responsiveness shown in the time from the photoperiodic change to the mode change. Strains of this insect with higher or lower responsiveness to photoperiodic change were established after several generations of selection, indicating that the individual variation has a genetic basis. The selected strains that were more responsive and less responsive to one photoperiodic change were found to be less responsive and more responsive to the opposite photoperiodic change, respectively, indicating a significant negative correlation between responsiveness to reciprocal photoperiodic changes. The selected strains also had a significantly different incidence of diapause-egg producers in stationary photoperiods compared to a non-selected strain, showing that selections for responsiveness to photoperiodic change were essentially the same as selections for a higher or lower incidence of diapause-egg producers. These results indicate that responsiveness to photoperiodic change is one aspect of the tendency to produce diapause or non-diapause eggs.  相似文献   

8.
Pubertal development in prairie deer mice (Peromyscus maniculatus bairdii) is accelerated by exposure of juveniles to a long-day photoperiod, and, conversely, retarded by exposure to short days. The purpose of the present study was to evaluate the possible involvement of the circadian system in the photoperiodic regulation of puberty. Weanling males, previously housed on a short-day light cycle of 6L:18D, were subjected to a "resonance" protocol in which they received one of the following light cycles: 6L:18D, 6L:30D, 6L:42D, 6L:54D, or 16L:8D. Post-weaning exposure to cycles of 16L:8D, 6L:30D, and 6L:54D stimulated reproductive organ growth as measured at 6 weeks of age. Exposure to cycles of 6L:18D and 6L:42D failed to stimulate reproductive development. These data support the hypothesis that young male deer mice use a circadian rhythm of responsiveness to light to measure photoperiodic time and, consequently, regulate pubertal development.  相似文献   

9.
Short day lengths or reduced food availability are salient cues for small mammals that breed seasonally. Photoperiod-mediated gonadal regression in white-footed mice (Peromyscus leucopus) is a slow, orderly process that involves testicular apoptosis. Testicular regression in response to restricted caloric intake is relatively rapid, and it is generally reversed quickly by ad libitum (ad lib) feeding. To determine the contribution of apoptotic cell death during food restriction, and to examine possible interactions with photoperiod, mice housed in long (16L:8D) or short (8L:16D) photoperiods were fed either ad lib or 70% of their average ad lib intake. Testes were removed at 2, 4, 6, or 8 wk of experimental treatment. Apoptotic activity was determined by in situ TUNEL labeling and assessment of DNA laddering. Significant (P < 0.05) gonadal regression in response to short days was first detected at 8 weeks in mice fed ad lib. Food-restricted, long-day mice also showed significant testicular regression at 8 wk. Combined exposure to short day lengths and food restriction resulted in significant testicular regression at 6 wk (P < 0.05). TUNEL labeling was slightly, though significantly, elevated in germ cells at 2 and 4 wk in long-day food-restricted mice (P < 0.05). TUNEL labeling was also elevated in short-day food-restricted males at these early times but then increased nearly 5-fold at 6 and 8 wk in these mice (P < 0.001). DNA laddering confirmed elevated apoptosis. Overall apoptotic activity negatively correlated with paired testis mass, plasma testosterone, and spermatogenic index measurements in both ad lib and food-restricted males. Few histological markers of necrotic cell death were observed in any group. Taken together, these results suggest that testicular regression in response to limited caloric intake or short days is mediated by apoptosis.  相似文献   

10.
In Siberian hamsters (Phodopus sungorus), short days suppress reproductive function and lymphocyte proliferation. To determine whether melatonin influences cell-mediated immunity through a direct action on lymphocyte proliferation, in vitro responsiveness to mitogens and melatonin was assessed in systemic and splenic lymphocytes from adult female Siberian hamsters housed in either long or short days for 13 weeks. Short days provoked reproductive regression and reduced lymphocyte proliferation. Physiological concentrations of melatonin (50 pg/ml) inhibited in vitro proliferation of circulating lymphocytes, whereas higher concentrations (> or = 500 pg/ml) were required to inhibit proliferation of splenic lymphocytes. Immunomodulatory effects of melatonin were restricted to lymphocytes from long-day hamsters-in vitro melatonin had no effect on circulating or splenic lymphocytes from females in short days. Responsiveness to melatonin in short-day lymphocytes may be restrained by the already expanded nightly pattern of melatonin secretion in short days. These data support the hypothesis that melatonin acts directly on lymphocytes from long-day hamsters to suppress blastogenesis.  相似文献   

11.
Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.  相似文献   

12.
Adult male Syrian hamsters of the inbred LSH/Ss Lak strain were maintained under a 14L:10D light cycle until 13 weeks of age. At this point, they were implanted s.c. with elastomer capsules that were either empty or packed with 30-40 mg of 6-methoxybenzoxazolinone (6-MBOA), a compound found naturally in some monocotyledonous plants; half of the animals from each treatment group were then kept in long days (14L:10D) or transferred to short days (9L:15D). Testicular size was measured and blood samples collected from each hamster immediately before capsule implantation and again 2, 4, 6 and 8 weeks later. Within just 2 weeks of exposure to short days the mean plasma levels of LH and FSH had significantly declined, in both the control and 6-MBOA-treated animals, and were basal within 4 weeks. Testicular size closely followed these gonadotrophin changes; within 4-6 weeks the testes from all of the short-day hamsters had completely regressed to a prepubertal size. At the end of the experiment, at Week 8, the animals were killed and various components of the hypothalamo-pituitary-testicular axis were compared between the treatment groups. The pituitary content of FSH and LH, testicular weight, mean serum level of testosterone, but not hypothalamic LHRH content or pituitary gland weight, were considerably lower in the short-day than in the long-day hamsters, regardless of whether or not they had been chronically treated with 6-MBOA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract In order to elucidate the mechanism regulating its seasonal life cycle, the photoperiodic response of Achaearanea tepidariorum has been analysed. Nymphal development was faster in long-day and slower in short-day photoperiods. The combined action of low temperature, poor food supply and short daylength induced diapause at an earlier developmental stage than short days alone. Thus, photoperiod is a primary factor inducing nymphal diapause, but the diapausing instar is influenced by both temperature and food supply. Hibernating nymphs became unresponsive to photoperiod in late December. After hibernation, however, sensitivity was restored and the nymphs remained sensitive to photoperiod throughout their life. This spider could also enter an imaginal or reproductive diapause. Photoperiod was again a primary inducing factor and temperature modified the photoperiodic response to some extent. The induction of the reproductive diapause was almost temperature-compensated whereas development was not. So the involvement of a photoperiodic counter system was suggested. Irrespective of whether the nymph had experienced diapause or not, the imaginal diapause was induced in response to a short-day photoperiod after adult moult. Based on these observations, the seasonal life cycle and the adaptive significance of nymphal and imaginal diapause are discussed.  相似文献   

14.
Abstract  Photoperiodic sensitivity for diapause induction of the green lacewing, Chrysoperla sinica (Tjeder) was examined at 22°C. The adult diapause of C. sinica was induced by short-day photoperiods, and the critical photoperiod for its induction was between 12.5L-11.5D and 13L-11D.
Adults developed without diapause under long-day conditions, and entered diapause under short-day conditions. The adult stage was the uppermost sensitive stage for adult diapause induction, adults could go into diapause only when the emerging adults were under diapause-inducing short-day photoperiods. The short-day photoperiodic experience by transferring between 15L: 9D and 9L: 15D at preimaginal stages did not result in adult diapause under 15L: 9D photo regime, although some treatments extended the pre-oviposition period in adult stage. The results showed that the 3rd instar larvae and pre-pupae were more sensitive to the photoperiodic change from 15L: 9D to 9L: 15D photo regime than the other preimaginal stages.  相似文献   

15.
Energetic demands are high while energy availability is minimum during winter. To cope with this energetic bottleneck, animals exhibit numerous energy-conserving adaptations during winter, including changes in immune and reproductive functions. A majority of individual rodents within a population inhibits reproductive function (responders) as winter approaches. A substantial proportion of small rodents within a species, however, fails to inhibit reproduction (nonresponders) during winter in the field or in the laboratory when maintained in winter-simulated day lengths. In contrast, immune function is bolstered by short day lengths in some species. The specific mechanisms that link reproductive and immune functions remain unspecified. Leptin is a hormone produced by adipose tissue, and several studies suggest that leptin modulates reproductive and immune functions. The present study sought to determine if photoperiodic alterations in reproductive function and leptin concentrations are linked to photoperiod-modulated changes in immune function. Siberian hamsters (Phodopus sungorus) were housed in either long (LD 16:8) or short (LD 8:16) day lengths for 9 wk. After 9 wk, blood samples were collected during the middle of the light and dark phase to assess leptin concentrations. One week later, animals were injected with keyhole limpet hemocyanin to evaluate humoral immunity. Body mass, body fat content, and serum leptin concentrations were correlated with reproductive responsiveness to photoperiod; short-day animals with regressed gonads exhibited a reduction in these measures, whereas short-day nonresponders resembled long-day animals. In contrast, immune function was influenced by photoperiod but not reproductive status. Taken together, these data suggest that humoral immune function in Siberian hamsters is independent of photoperiod-mediated changes in leptin concentrations.  相似文献   

16.
Terrestrial slugs (Lehmannia valentiana) collected from a field in Osaka, southwestern Japan, were reared under long-day (16-h light and 8-h darkness, LD 16:8) or short-day conditions (LD 12:12) at 15, 20, or 25 degrees C for 60 days. Slugs reared under short-day conditions were heavier than those reared under long-day conditions; however, slugs reared at 15 degrees C gained more weight regardless of the photoperiodic condition. Gonads were significantly heavier under short-day conditions than under long-day conditions, and oogenesis and spermatogenesis were also induced under short-day conditions. Under short-day conditions, reproductive maturation was suppressed at 25 degrees C as compared with 15 and 20 degrees C, whereas under long-day conditions, lower temperatures induced reproductive maturation. In contrast, slugs reared under short-day conditions at 20 degrees C from the time of hatching gained more weight than those reared under long-day conditions at the same temperature. Moreover, short-day conditions induced reproductive maturation, similar to that observed in the field-collected slugs. In conclusion, short-day and low-temperature conditions promoted growth and reproductive maturation, whereas long-day and high-temperature conditions suppressed them in L. valentiana. Thus, L. valentiana reproduces from late autumn to spring in Osaka.  相似文献   

17.
Among the suite of adaptations displayed by seasonally-breeding rodents, individuals of most species display reproductive regression and concomitant decreases in gonadal steroids during the winter. In addition, some species display increased aggression in short "winter-like" days compared with long "summer-like" day lengths. For example, male Syrian and Siberian hamsters held in short days express heightened levels of aggression that are independent of gonadal steroids. Virtually nothing is known, however, regarding seasonal aggression in female Siberian hamsters (Phodopus sungorus). Studies were undertaken to determine female levels of aggression in long and short days as well as the role of gonadal steroids in mediating this behavior. In Experiment 1, females were housed in long or short days for 10 weeks and resident-intruder aggression was assessed. Prior to testing, estrous cycle stages were determined by vaginal cytology and females were tested during both Diestrus I and Proestrus. In Experiment 2, hormone levels were experimentally manipulated; long-day females were ovariectomized (OVx) or given sham surgeries whereas short-day females were implanted with capsules containing 17beta-estradiol (E(2)) or Progesterone (P). In Experiment 3, both long- and short-day females were ovariectomized and implanted with either an exogenous E(2) or blank capsule, or given a sham surgery. Short-day hamsters displayed increased aggression relative to long-day females. Aggression was not affected by estrous stage. There was no difference in aggression between long-day OVx and sham animals. Furthermore, neither exogenous E(2) nor P had any significant effect on aggression. These results support previous findings of increased non-breeding aggression and suggest that short-day aggression is not likely mediated by circulating levels of gonadal steroids. These results also suggest that the endocrine regulation of seasonal aggression may be similar between the sexes.  相似文献   

18.
The Turkish hamster (Mesocricetus brandti) is a photoperiodic species. In this investigation, we characterized the photoperiodic requirements for termination of gonadal refractoriness, defined as the inability of the animal to respond to short-day treatment with gonadal regression. Paired testes weights were reduced to less than 20% of their original weight by 10 wk of 12L:12D treatment. This was followed by spontaneous testicular recrudescence (completed by Week 25 of 12L:12D treatment), the overt indication of refractoriness to short photoperiods. Next, the period of long-day exposure sufficient for termination of refractoriness was determined. Refractory males were exposed to 16L:8D for 5 to 20 wk. Ten weeks of 16L:8D treatment was enough for the animals to regain the sensitivity to a second challenge of 12L:12D treatment. Fifteen weeks of 20L:4D or 16L:8D terminated refractoriness in female Turkish hamsters; 20L:4D therefore was not interpreted as a short day by refractory hamsters. This was unexpected because in photosensitive animals this photoperiod acts like a short day, causing gonadal regression. These results suggest that Turkish hamsters are similar to Syrian hamsters in that both species require two or more months of long days in summer to recover sensitivity to the short days of the following fall.  相似文献   

19.
The golden hamster, Mesocricetus auratus, is the only photoperiodic rodent to date that has been shown to fail to respond to inhibitory (i.e., short, less than 12.5 h/day) photoperiods until after pubertal onset. In other photoperiodic hamsters, mice, and voles, short photoperiods greatly retard gonadal maturation. The Turkish hamster, Mesocricetus brandti, is a photoperiodic rodent that as an adult is reproductively competent only on photoperiods of 15-17 h of light per day; photoperiods of less than 15 or greater than 17 h of light promote gonadal regression. In this report we addressed two questions: a) are prepubertal M. brandti photoperiodic, and b) if so, is gonadal maturation enhanced or suppressed by exposure to photoperiods of greater than 17 h of light per day? Turkish hamsters were raised on photoperiods of 12, 16, 20, or 24 (= LL) h of light per day. Testicular growth was retarded for 16 wk by 12L:12D. Very long days, 20L:4D, or LL did not retard testicular development. In females, pubertal onset, as indicated by first vaginal estrus, was delayed in young raised on 12L:12D and in 2 of 18 and 4 of 19 young raised on 20L:4D and LL, respectively. These results demonstrate that prepubertal Turkish hamsters are photoperiodic, but respond differently from adults to photoperiods greater than 17 h of light per day.  相似文献   

20.
In most photoperiodic avian forms (irrespective of temperate or tropical distribution) including the baya weaver,Ploceus philippinus, seasonal reproduction comes to an end due to the development of a photoperiodically controlled photorefractory phase when birds cease to respond to the stimulatory effect of long days. In the present paper photoperiodic control of the termination of photorefractory phase has been examined by studying the effect of short-day exposure lasting 4–6 months on long-day response of birds. Results indicate that unlike in other photoperiodic birds short-day exposure of winter is not a prerequisite for the termination of photorefractory phase in the reproductive cycle of baya weaver. Artificial long days on the other hand hasten the termination of this phase. Refractory phase in baya weaver, therefore, unlike that in temperate forms, is a temporary state resulting most likely from a sequel of physiological events triggered by long days of spring/summer which temporarily mask the photostimulatory response. Spontaneous termination of photorefractoriness in birds of tropical habitats may have a selective value imparting to the reproductive cycle the necessary elasticity for adaptation to diverse ecological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号