首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sarcolemmal membrane obtained from rat heart by hypotonic shock-LiBr treatment method was found to incorporate 32P from [γ-32P] ATP in the absence and presence of cyclic AMP and protein kinase. The phosphorylated membrane showed an increase in Ca2+ ATPase and Mg2+ ATPase activities without any changes in Na+K+ ATPase activity. The observed increase in Ca2+Mg2+ ATPase activity was found to be associated with an increase in Vmax value of the reaction whereas Ka value for Ca2+Mg2+ was not altered. These results provide information concerning biochemical mechanism for increased calcium entry due to hormones which are known to elevate cyclic AMP levels in myocardium and produce a positive inotropic effect.  相似文献   

2.
The human erythrocyte membrane Ca2+Mg2+ ATPase responded to the presence of an acidic phospholipase A2 and to low levels of trypsin (and chymotrypsin) in much the same way as it did to calmodulin isolated from human erythrocytes. The increased concentration of ATP hydrolyzed in 1 hour was similar to that observed when calmodulin had been added to a suspension of membranes during the assay. The observations reported here strongly suggest that activation of the Ca2+M2+ ATPase can proceed by introducing apparently distinct perturbations either to the protein or to phospholipid domains of the erythrocyte membrane.  相似文献   

3.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

4.
The interactions between calmodulin, ATP and Ca2+ on the red cell Ca2+ pump have been studied in membranes stripped of native calmodulin or rebound with purified red cell calmodulin. Calmodulin stimulates the maximal rate of (Ca2+ + Mg2+)-ATPase by 5–10-fold and the rate of Ca2+-dependent phosphorylation by at least 10-fold. In calmodulin-bound membranes ATP activates (Ca2+ + Mg2+)-ATPase along a biphasic concentration curve (Km1 ≈ 1.4 μM, Km2 ≈ 330 μM), but in stripped membranes the curve is essentially hyperbolic (Km ≈ 7 μM). In calmodulin-bound membranes Ca2+ activates (Ca2+ + Mg2+)-ATPase at low concentrations (Km < 0.28 μM) in stripped membranes the apparent Ca2+ affinities are at least 10-fold lower.The results suggest that calmodulin (and perhaps ATP) affect a conformational equilibrium between E2 and E1 forms of the Ca2+ pump protein.  相似文献   

5.
The membrane Ca2+Mg2+ ATPase of density (age) separated human erythrocytes was examined for its stimulation by the cytosols of these cell groups. On the assumption that the stimulatory activity in the cytosol is only calmodulin, it was consistently observed that the young cytosol had a significantly higher activity towards the membrane Ca2+Mg2+ ATPase activity (from any age group) than did the old cell cytosol. The data clearly demonstrates decided differences in the expression of calmodulin activity in cytosols from young and old erythrocytes and would support the conclusion that calmodulin activity is altered during in vivo aging of these cells. Possible mechanisms for these alterations are discussed.  相似文献   

6.
7.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

8.
9.
Calcium uptake by adipocyte endoplasmic reticulum was studied in a rapidly obtained microsomal fraction. The kinetics and ionic requirements of Ca2+ transport in this preparation were characterized and compared to those of (Ca2+ + Mg2+)-ATPase activity. The time course of Ca2+ uptake in the presence of 5 mM oxalate was nonlinear, approaching a steady-state level of 10.8–11.5 nmol Ca2+/mg protein after 3–4 min of incubation. The rate of Ca2+ transport was increased by higher oxalate concentrations with a near linear rate of uptake at 20 mM oxalate. The calculated initial rate of calcium uptake was 18.5 nmol Ca2+/mg protein per min. The double reciprocal plot of ATP concentration against transport rate was nonlinear, with apparent Km values of 100 μM and 7 μM for ATP concentration ranges above and below 50 μM, respectively. The apparent Km values for Mg2+ and Ca2+ were 132 μM and 0.36–0.67 μM, respectively. The energy of activation was 23.4 kcal/mol. These kinetic properties were strikingly similar to those of the microsomal (Ca2+ + Mg2+)-ATPase. The presence of potassium was required for maximum Ca2+ transport activity. The order of effectiveness of monovalent cations in stimulating both Ca2+ transport and (Ca2+ + Mg2+-ATPase activity was K+ >Na+ = NH4+ >Li+ . Ca2+ transport and (Ca2+ + Mg2+)-ATPase activity were both inhibited 10–20% by 6 mM procaine and less than 10% by 10 mM sodium azide. Both processes were completely inhibited by 3 mM dibucaine or 50 μM p-chloromercuribenzene sulfonate. The results indicate that Ca2+ transport in adipocyte endoplasmic reticulum is mediated by a (Ca2+ + Mg2+)-ATPase and suggest an important role for endoplasmic reticulum in control of intracellular Ca2+ distribution.  相似文献   

10.
11.
Plasma membrane vesicles of Ehrlich ascites carcinoma cells have been isolated to a high degree of purity. In the presence of Mg2+, the plasma membrane preparation exhibits a Ca2+-dependent ATPase activity of 2 μmol Pi per h per mg protein. It is suggested that this (Ca2+ + Mg2+)-ATPase activity is related to the measured Ca2+ transport which was characterized by Km values for ATP and Ca2+ of 44 ± 9 μM and 0.25 ± 0.10 μM, respectively. Phosphorylation of plasma membranes with [γ-32P]ATP and analysis of the radioactive species by polyacrylamide gel electrophoresis revealed a Ca2+-dependent hydroxylamine-sensitive phosphoprotein with a molecular mass of 135 kDa. Molecular mass and other data differentiate this phosphoprotein from the catalytic subunit of (Na+ + K+)-ATPase and from the catalytic subunit of (Ca2+ + Mg2+)-ATPase of endoplasmic reticulum. It is suggested that the 135 kDa phosphoprotein represents the phosphorylated catalytic subunit of the (Ca2+ + Mg2+)-ATPase of the plasma membrane of Ehrlich ascites carcinoma cells. This finding is discussed in relation to previous attempts to identify a Ca2+-pump in plasma membranes isolated from nucleated cells.  相似文献   

12.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 μM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 μM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z >Ca4Z >Ca2Z ? CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10?7–10?6 M Ca2+, even at a calmodulin concentration of 5 μM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 μM, corresponding to 50–80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/g membrane protein. We therefore conclude that most of the calmodulin id dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10?7 – 10?8 M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10?6 – 10?5 M.  相似文献   

13.
Uptake of Ca2+ by sarcoplasmic reticulum in the presence of oxalate displays biphasic kinetics. An initial phase of normal uptake is followed by a second phase coincident with precipitation of calcium oxalate inside the vesicles. The precipitation rate induced by actively transported Ca2+ is depressed by increasing the added Ca2+ concentration. This correlates linearly with the reciprocal of precipitation rate. Therefore, a maximal limit rate could be extrapolated at zero Ca2+ (V0). The rate of precipitation, also a function of added amount protein, gives a linear correlation in a double reciprocal plot. Thus, it was possible to estimate the maximal precipitation rate occurring at infinite protein concentration (V). With the combined extrapolated values a maximal expected precipitation rate could be calculated (V0). Kinetics of calcium oxalate precipitation was studied in the absence of calcium uptake and empirical equations relating the rate of precipitation with the added Ca2+ were established. Entering V0 in the equations, an internal free Ca2+ concentration of approx. 2.5 mM was estimated. Additionally, it is shown that the ionophore X-537A does not supress the Ca2+ uptake, if added during the oxalate-dependent phase, albeit the uptake proceeds at a slower rate after the release of approx. 70 nmol Ca2+/mg protein. This amount presumably equals the internal free Ca2+ not sequestered by oxalate, producing a maximal concentration approx. 14 mM. Taking into account low affinity binding of internal binding sites and the transmembrane Ca2+ gradients built up during the uptake of Ca2+, values of free Ca2+ ranging from 3 to 6 mM, approaching those estimated by the precipitation analysis, could be estimated.  相似文献   

14.
Cholinergic synaptic vesicles from the electric organ of Torpedocalifornica have been subjected to analytical scale separation techniques not utilized in the isolation procedure, and the ATPase activity of separated fractions determined. Most of the ATPase activity migrated with the vesicles. Sensitivity of the ATPase activity to 16 potential inhibitors also was determined. Most of the ATPase activity was inhibited by low concentrations of 4-chloro-7-nitrobenzo-oxadiazole (NBD-C1) and dicyclohexylcarbodiimide (DCCD), but not by a water soluble carbodiimide. The close association of the ATPase with the vesicles and the pattern of inhibition obtained provide further support for the authentic presence of a membrane bound Ca2+Mg2+ ATPase in the cholinergic synaptic vesicle.  相似文献   

15.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

16.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [γ-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250 000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes.These results suggest that the formation of triphosphoinositide rather than the (Ca2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

17.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium (K121 = 0.12 μM) and the second had a comparatively low affinity (K212 = 49.5 μM). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 μM). Calmodulin (12.5 μ/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 μM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis.  相似文献   

18.
The additional activation by monovalent cations of the (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied.The Ca2+-ATPase occurs in two different states. In the A-state the enzyme is virtually free of protein activator and the kinetics of Ca2+ activation is characterized by low apparent Ca2+ affinity and low maximum activity. In the B-state the enzyme is associated with activator and the kinetics is characterized by high Ca2+ affinity and high maximum activity.At optimum concentrations of Ca2+ the additional activation of the B-state by K+, NH4+, Na+ and Rb+ exceeded the corresponding activations of the A-state, and half-maximum activations by K+, NH4+, and Na+ were achieved at lower concentrations in the B-state than in the A-state. Li+ and Cs+ activated the two states almost equally but maximum activation was obtained at lower cation concentrations in the B-state than in the A-state.The activation of the B-state by the various cations decreased in the order K+ > NH4+ > Na+ = Rb+ > Li+ = Cs+. The A-state was activated almost equally by K+, Na+, NH4+, and Rb+ and to a smaller extent by Li+ and Cs+.At sub-optimum concentrations of Ca2+ high concentrations of monovalent cations (100 mM) activated the Ca2+-ATPase equally in the A-state and the B-state. In the absence of Ca2+ the monovalent cations inhibited the Mg2+-dependent ATPase in both types of membranes. This dependence on Ca2+ indicates that the monovalent cations interact with the Ca2+ sites in the B-state.The results suggest that K+ or Na+, or both, contribute to the regulation of the Ca2+ pump in erythrocytes.  相似文献   

19.
Two spectroscopic probes of free internal Ca2+ were used to determine the influence of H+ and anion permeation on the active transport of Ca2+ by skeletal sarcoplasmic reticulum. The studies were carried out on a well-characterized Ca2+-Mg2+-ATPase-rich sarcoplasmic reticulum fraction. Studies of D. McKinley and G. Meissner (1977, FEBS Lett., 82, 47–50) show that this fraction consists of two populations of vesicles: type I which has an electrically active monovalent cation (M+) permeability and type II which lacks it. The present study distinguishes between electrically active (charge-carrying) and electrically silent (e.g., countertransport) mechanisms of ion permeation in the two vesicles and shows how the active transport of Ca2+ is influenced by these permeabilities. The major results are as follows: (1) Both type I and II vesicles have an electrically active H+ permeability. (2) Type I vesicles have electrically active anion (A?) permeabilities; type II vesicles do not. (3) At low concentrations of nonpenetrating buffers, ion imbalances across the membrane can create pH imbalances. This is due to the coupling of M+ and A? movements with H+ movements. Following a jump in KCl concentration internal acidification is observed in type I vesicles while internal alkalinization is observed in type II vesicles. These pH gradients are dissipated on a time scale of seconds and tens of minutes for type I and II vesicles, respectively. (4) Tris(hydroxymethyl)aminomethane (Tris) was shown to be effective in dissipating pH gradients in type II vesicles. A model is proposed whereby HCl is equilibrated across the membrane by a Tris-catalyzed transport cycle involving transport of an ion pair between Tris-H+ and Cl? and return of the unprotonated form of the buffer. (5) The permeabilities of several physiological and nonphysiological anions were determined for type I and II vesicles. Electrically active permeability was demonstrated for Cl? and phosphate in type I vesicles. Type II vesicles lacked electrically active mechanisms for these two anions. Evidence is given for slow Cl?OH? exchange and for rapid Cl?HCO3? exchange in type II vesicles. Electrically silent phosphate influx probably occurs by H2PO4?OH? exchange. (6) Under normal conditions the Ca2+ uptake of type II vesicles is masked. It can be unmasked by addition of nigericin in the presence of Tris. The combination of ionophore and penetrating buffer render the type II vesicles KCl permeable, allowing the replenishment of internal K+ during active transport. The results are analyzed and shown to be in agreement with the Ca2+-Mg2+-ATPase pump acting as a Ca2+K+ exchanger. The results are shown to be in disagreement with electrogenic models of pump function.  相似文献   

20.
Gastric microsomes do not contain any significant Ca2+-stimulated ATPase activity. Trypsinization of pig gastric microsomes in presence of ATP results in a significant (2–3-fold) increase in the basal (with Mg2+ as the only cation) ATPase activity, with virtual elimination of the K+-stimulated component. Such treatment causes unmaksing of a latent Mg2+-dependent Ca2+-stimulated ATPase. Other divalent cations such as Sr2+, Ba2+, Zn2+ and Mn2+ were found ineffective as a substitute for Ca2+. Moreover, those divalent cations acted as inhibitors of the Ca2+-stimulated ATPase activity. The pH optimum of the enzyme is around 6.8. The enzyme has a Km of 70 μM for ATP and the Ka values for Mg2+ and Ca2+ are about 4 · 10?4M and 10?7 M, respectively. Studies with inhibitors suggest the involvement of sulfhydryl and primary amino groups in the operation of the enzyme. Possible roles of the enzyme in gastric H+ transport have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号