首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of respiration on glucose in procyclic Trypanosoma congolense in the presence of rotenone, antimycin, cyanide, salicylhydroxamic acid and malonate have indicated the presence of NADH dehydrogenase, cytochrome b-c1, cytochrome aa3, trypanosome alternate oxidase and NADH fumarate reductase/succinate dehydrogenase pathway that contributes electrons to coenzyme Q of the respiratory chain. The rotenone sensitive NADH dehydrogenase, the trypanosome alternate oxidase, and cytochrome aa3 accounted for 24.5 +/- 6.5, 36.2 +/- 4.2 and 54.1 +/- 5.5% respectively of the total respiration. Activities of lactate dehydrogenase, NAD(+)-linked malic enzyme and pyruvate kinase were less than 6 nanomoles/min/mg protein suggesting that they play a minor role in energy metabolism of the parasite. Phosphoenolpyruvate carboxykinase, pyruvate dehydrogenase, succinate dehydrogenase, NADP(+)-linked malic enzyme, NADH fumarate reductase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase and glycerol kinase on the other hand had specific activities greater than 60 nanomoles/min/mg protein. These enzyme activities could account for the production of pyruvate, acetate, succinate and glycerol. The results further show that the amount of glycerol produced was 35-48% of the combined total of pyruvate, acetate and succinate produced. It is apparent that some of the glycerol 3-phosphate produced in glycolysis in the presence of salicylhydroxamic acid is dephosphorylated to form glycerol while the rest is oxidised via cytochrome aa3 to form acetate, succinate and pyruvate.  相似文献   

2.
A biosensor system for continuous flow determination of enzyme activity was developed and applied to the determination of glucose oxidase and lactic dehydrogenase activities. The glucose oxidase activity sensor was prepared from the combination of an oxygen electrode and a flow cell. Similarly, the lactic dehydrogenase activity sensor was prepared from the combination of a pyruvate oxidase membrane, an oxygen electrode, and a flow cell. Pyruvate oxidase was covalently immobilized on a membrane prepared from cellulose triacetate, 1,8-diamino-4-aminomethyloctane, and glutaraldehyde. Glucose oxidase activity was determined from the oxygen consumed upon oxidation of glucose catalyzed by glucose oxidase. Lactic dehydrogenase activity was determined from the pyruvic acid formed upon dehydrogenation of lactic acid catalyzed by lactic dehydrogenase. The amount of pyruvic acid was determined from the oxygen consumed upon oxidation of pyruvic acid by pyruvate oxidase. Calibration curves for activity of glucose oxidase and lactic dehydrogenase were linear up to 81 and 300 units, respectively. One assay could be completed within 15 min for both sensors and these were stable for more than 25 days at 5°C. The relative errors were ±4 and ±6% for glucose oxidase and lactic dehydrogenase sensors, respectively. These results suggest that the sensor system proposed is a simple, rapid, and economical method for the determination of enzyme activities.  相似文献   

3.
1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.  相似文献   

4.
Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.  相似文献   

5.
The antifungal antibiotic flavensomycin inhibited the oxidation of amino acids and of glucose by Penicillium oxalicum. The compound inhibited l-amino acid oxidase (EC 1.4.3.2) activity for l-leucine and l-phenylalanine, and also d-amino acid oxidase (EC 1.4.3.3) in the oxidation for dl-alanine. The addition of flavin adenine dinucleotide, which is a cofactor for this enzyme, antagonized the action of the antibiotic. Glucose oxidase (EC 1.1.3.4) was also inhibited. The antibiotic inhibited the reduced nicotinamide adenine dinucleotide (NADH(2)) cytochrome c reductase (EC 1.6.2.1) as well as the much slower nonenzymatic reduction of this cytochrome by the nucleotide. Reduced cytochrome c was also oxidized nonenzymatically by flavensomycin. The antibiotic completely inhibited the action of rabbit muscle lactic dehydrogenase (EC 1.1.1.27) in promoting the reduction of pyruvate by NADH(2) but only slightly affected the reverse reaction. Alcohol dehydrogenase (EC 1.1.1.1) was also similarly inhibited. Flavensomycin prevented the reduction of nicotinamide adenine dinucleotide phosphate by isocitrate in the presence of isocitrate dehydrogenase (EC 1.1.1.42). The hexokinase (EC 2.7.1.1)-catalyzed phosphorylation of glucose, in which the adenosine triphosphate acts as a phosphate donor, was only slightly affected. Flavensomycin also inhibited the action of yeast lactate dehydrogenase (EC 1.1.2.3) on the reduction of cytochrome c. High concentrations of cytochrome c were antagonistic to this reaction. The results point to an interference with enzymatically controlled hydrogen or electron transfer as the mechanism of the antifungal activity of flavensomycin.  相似文献   

6.
Saccharomyces cerevisiae mutants unable to grow and ferment glucose have been isolated. Of 45 clones isolated, 25 had single enzyme defects of one of the following activities: phosphoglucose isomerase (pgi), phosphofructokinase (pfk), triosephosphate isomerase (tpi), phosphoglycerate kinase (pgk), phosphoglyceromutase (pgm), and pyruvate kinase (pyk). Phosphofructokinase activities in crude extracts of the pfk mutant were only 2% of the wild-type level. However, normal growth on glucose medium and normal fermentation of glucose suggested either that the mutant enzyme was considerably more active in vivo or, alternatively, that 2% residual activity was sufficient for normal glycolysis. All other mutants were moderately to strongly inhibited by glucose. Unusually high concentrations of glycolytic metabolites were observed before the reaction catalyzed by the enzyme which was absent in a given mutant strain when incubated on glucose. This confirmed at the cellular level the location of the defect as determined by enzyme assays. With adh (lacks all three alcohol dehydrogenase isozymes) and pgk mutants, accumulation of the typical levels of hexosephosphates was prevented when respiration was blocked with antimycin A. A typical feature of all glycolytic mutants described here was the rapid depletion of the intracellular adenosine 5'-triphosphate pool after transfer to glucose medium. No correlation of low or high levels of fructose-1,6-bisphosphate with the degree of catabolite repression and inactivation could be found. This observation does not support the concept that hexose metabolites are directly involved in these regulatory mechanisms in yeast.  相似文献   

7.
Regulation of alternative oxidase activity in higher plants   总被引:10,自引:0,他引:10  
Plant mitochondria contain two terminal oxidases: cytochrome oxidase and the cyanideinsensitive alternative oxidase. Electron partioning between the two pathways is regulated by the redox poise of the ubiquinone pool and the activation state of the alternative oxidase. The alternative oxidase appears to exist as a dimer which is active in the reduced, noncovalently linked form and inactive when in the oxidized, covalently linked form. Reduction of the oxidase in isolated tobacco mitochondria occurs upon oxidation of isocitrate or malate and may be mediated by matrix NAD(P)H. The activity of the reduced oxidase is governed by certain other organic acids, notably pyruvate, which appear to interact directly with the enzyme. Pyruvate alters the interaction between the alternative oxidase and ubiquinol so that the oxidase becomes active at much lower levels of ubiquinol and competes with the cytochrome pathway for electrons. These requirements for activation of the alternative oxidase constitute a sophisticated feed-forward control mechanism which determines the extent to which electrons are directed away from the energy-conserving cytochrome pathway to the non-energy conserving alternative oxidase. Such a mechanism fits well with the proposed role of the alternative oxidase as a protective enzyme which prevents over-reduction of the cytochrome chain and fermentation of accumulated pyruvate.  相似文献   

8.
1. Increased specific activities of cytochrome c oxidase, catalase, succinate dehydrogenase, succinate-cytochrome c oxidoreductase, NADH-cytochrome c oxidoreductase and malate dehydrogenase were observed during glucose de-repression of Schizosaccharomyces pombe. 2. The cell-cycle of this organism was analysed by three different methods: (a) harvesting of cells at intervals from a synchronous culture, (b) separation of cells by rate-zonal centrifugation into different size classes and (c) separation of cells by isopycnic-zonal centrifugation into different density classes. 3. Measurement of enzyme activities during the cell-cycle showed that all the enzymes assayed [cytochrome c oxidase, catalase, acid p-nitrophenylphosphatase, NADH-dehydrogenase, NADH-cytochrome c oxidoreductase, NADPH-cytochrome c oxidoreductase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase (NADP) and fumarate hydratase] show periodic expression as ;peaks'. 4. Cytochrome c oxidase shows a single maximum at 0.67 of a cycle, whereas succinate dehydrogenase exhibits two maxima separated by 0.5 of a cell-cycle. 5. All other enzymes assayed showed two distinct maxima per cell-cycle; for catalase, malate dehydrogenase and NADPH-cytochrome c oxidoreductase there is the possibility of multiple fluctuations. 6. The single maximum of cytochrome c oxidase appears at a similar time in the cycle to one maximum of each of the other enzymes studied, except for NADH dehydrogenase. 7. These results are discussed with reference to previous observations on the expression of enzyme activities during the cell-cycle of yeasts.  相似文献   

9.
Van Etten, James L. (University of Illinois, Urbana), H. Peter Molitoris, and David Gottlieb. Changes in fungi with age. II. Respiration and respiratory enzymes of Rhizoctonia solani and Sclerotium bataticola. J. Bacteriol. 91:169-175. 1966.-The rate of respiration of Rhizoctonia solani and Sclerotium bataticola decreased with age. This decrease in respiratory rate might be produced by a decrease in the specific activity of one or more enzymes involved in carbohydrate metabolism. Specific activities in cell-free extracts were measured for most of the enzymes in the hexose monophosphate shunt, Embden-Meyerhof-Parnas pathway, tricarboxylic acid cycle, and terminal electron-transport system. In addition, glucose oxidase, isocitritase, and malic enzyme were measured. In R. solani, increases in activity with age occurred for hexokinase, alpha-glycerolphosphate dehydrogenase, malic dehydrogenase, and cytochrome oxidase. Decreases occurred for phosphohexokinase, aconitase, nicotinamide adenine dinucleotide-specific isocitric dehydrogenase, reduced nicotinamide adenine dinucleotide oxidase, and at least one of the enzymes between 3-phosphoglycerate and pyruvate. In S. bataticola, increases in activity with age were observed for phosphohexokinase, pyruvic dehydrogenase, fumarase, malic dehydrogenase, and malic enzyme, whereas none of the enzymes decreased. The specific activities of the remaining enzymes did not change with age in either fungus.  相似文献   

10.
The roles of the pyruvate decarboxylation pathway and TCA metabolic cycle in activation of anaerobic metabolism in ripening Hamlin oranges were investigated. Oranges were harvested weekly from October to February during the 1980–81 and 1981–82 growing season. Juice vesicles from each weekly sample were assayed for pyruvate decarboxylase, alcohol dehydrogenase, malic enzyme, phosphoenolpyruvate carboxylase, malate dehydrogenase, citrate synthase, isocitrate dehydrogenase and cytochrome oxidase. Also, juice was assayed for ethanol, acetaldehyde, pyruvate, oxalacetate, malate and citrate. In December when ethanol accumulated rapidly in the fruit, pyruvate decarboxylase and alcohol dehydrogenase increased markedly. During the same month, the pyruvate level declined, suggesting that the increases in enzyme levels activated the conversion of pyruvate to ethanol.  相似文献   

11.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.  相似文献   

12.
The effect of poxB gene knockout on metabolism in Escherichia coli was investigated in the present paper based on the growth characteristics and the activities of the enzymes involved in the central metabolic pathways. The absence of pyruvate oxidase reduced the glucose uptake rate and cell growth rate, and increased O2 consumption and CO2 evolution. The enzyme assay results showed that although glucokinase activity increased, the flux through glycolysis was reduced due to the down-regulation of the other glycolytic enzymes such as 6-phosphofructosekinase and fructose bisphosphate aldolase in the poxB mutant. TCA cycle enzymes such as citrate synthase and malate dehydrogenase were repressed in the poxB mutant when the cells were cultivated in LB medium. The pyruvate oxidase mutation also resulted in the activation of glucose-6-phosphate dehydrogenase and acetyl-CoA synthetase. All these results suggest that pyruvate oxidase is not only a stationary-phase enzyme as previously known, and that the removal of the poxB gene affects the central metabolism at the enzyme level in E. coli.  相似文献   

13.
Lactate and ammonia are the most important waste products of central carbon metabolism in mammalian cell cultures. In particular during batch and fed-batch cultivations these toxic by-products are excreted into the medium in large amounts, and not only affect cell viability and productivity but often also prevent growth to high cell densities. The most promising approach to overcome such a metabolic imbalance is the replacement of one or several components in the culture medium. It has been previously shown that pyruvate can be substituted for glutamine in cultures of adherent Madin-Darby canine kidney (MDCK) cells. As a consequence, the cells not only released no ammonia but glucose consumption and lactate production were also reduced significantly. In this work, the impact of media changes on glucose and glutamine metabolism was further elucidated by using a high-throughput platform for enzyme activity measurements of mammalian cells. Adherent MDCK cells were grown to stationary and exponential phase in six-well plates in serum-containing GMEM supplemented with glutamine or pyruvate. A total number of 28 key metabolic enzyme activities of cell extracts were analyzed. The overall activity of the pentose phosphate pathway was up-regulated during exponential cell growth in pyruvate-containing medium suggesting that more glucose-6-phosphate was channeled into the oxidative branch. Furthermore, the anaplerotic enzymes pyruvate carboxylase and pyruvate dehydrogenase showed higher cell specific activities with pyruvate. An increase in cell specific activity was also found for NAD(+)-dependent isocitrate dehydrogenase, glutamate dehydrogenase, and glutamine synthetase in MDCK cells grown with pyruvate. It can be assumed that the increase in enzyme activities was required to compensate for the energy demand and to replenish the glutamine pool. On the other hand, the activities of glutaminolytic enzymes (e.g., alanine and aspartate transaminase) were decreased in cells grown with pyruvate, which seems to be related to a decreased glutamine metabolism.  相似文献   

14.
Autoantibodies present in the disease primary biliary cirrhosis react by immunoblotting with four major yeast mitochondrial antigens of 58 kDa, 55 kDa, 52 kDa and 45 kDa, tentatively identified as the lipoate acetyl transferases (E2) of the pyruvate dehydrogenase, component X of E2 pyruvate dehydrogenase, E2 of 2-oxo glutarate dehydrogenase and E2 of branched-chain 2-oxo acid dehydrogenase complexes respectively. The synthesis of these antigens is sensitive to catabolite repression. The reactive antigens are present in mit- mutants of yeast which have specific defects in the mitochondrial apocytochrome b, cytochrome oxidase subunit II and H+ -ATPase subunits 8 and 9, and in mtDNA-less rho O petite mutants, but a significant increase in the sensitivity to catabolite repression was observed in these mutants in particular in the mtDNA-less strains.  相似文献   

15.
A protease from Tetrahymena pyriformis inactivated eight of nine commercially available enzymes tested, including lactate deyhdrogenase, isocitrate dehydrogenase (TPN-specific), glucose-6 phosphate dehydrogenase, D-amino acid oxidase, fumarase, pyruvate kinase, hexokinase, and citrate synthase. Urate oxidase was not inactivated. Inactivation occurred at neutral pH, was prevented by inhibitors of the protease, and followed first order kinetics. In those cases tested, inactivation was enhanced by mercaptoethanol. Most of the enzyme-inactivating activity was due to a protease of molecular weight 25,000 that eluted from DEAE-Sephadex at 0.3 M KCl. A second protease of this molecular weight, which was not retained by the gel, inactivated only isocitrate dehydrogenase and D-amino acid oxidase. These two proteases could also be distinguished by temperature and inhibitor sensitivity. Two other protease peaks obtained by DEAE-Sephadex chromatography had little or no no enzyme inactivating activity, while another attacked only D-amino acid oxidase. At least six of the enzymes could be protected from proteolytic inactivation by various ligands. Isocitrates dehydrogenase was protected by isocitrate, TPN, or TPNH, glucose-6-dehydrogenase by glucose-6-P or TPN, pyruvate kinase by phosphoenolypyruvate or ADP, hexokinase by glucose, and fumarase by a mixture of fumarate and malate. Lactate dehdrogenase was not protected by either of its substrates of coenzymes. Citrate synthase was probably protected by oxalacetate. Our data suggest that the protease or proteases discussed here may participate in the inactivation or degradation of a least some enzymes in Tetrahymena. Since the inactivation occurs at neutral pH, this process could be regulated by variations in the cellular levels of substrates, coenzymes, or allosteric regulators resulting form changes in growth conditions or growth state. Such a mechanism would permit the selective retention of enzymes of metabolically active pathways.  相似文献   

16.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

17.
Amplifying the cellular reduction potential of Streptococcus zooepidemicus   总被引:1,自引:0,他引:1  
The valuable pharmaceutical polymer, hyaluronic acid, is produced industrially using the gram-positive bacterium Streptococcus zooepidemicus. Synthesis of this polymer is a significant energetic burden upon the microorganism hence the native NADH oxidase gene was cloned and overexpressed to increase the energy yield of catabolism during aerobic cultivation on glucose. Elevated NADH oxidase levels led to a decline in lactic acid generation and prevented ethanol formation, leaving acetate as the main fermentation product. Biomass yield increased due to the energy gained from the formation of acetate. Evaluation of the acetate flux control coefficient over a range of NADH oxidase expression levels revealed that acetate production was sensitive to the NADH oxidase level. However, at high NADH oxidase levels, the acetate flux was mainly influenced by another factor. The concomitant excretion of pyruvate at high NADH oxidase levels suggested that the flux through the pyruvate dehydrogenase enzyme complex was limiting the conversion of pyruvate to acetate.  相似文献   

18.
Glutamate (5mM) inhibited glucose conversion to fatty acids by approximately one-third in adipocytes from fed rats. This inhibition was significantly less in the pressence of pyruvate or 2-oxoglutarate. After incubation of adipose tissue from fed rats with glucose and insulin, pyruvate dehydrogenase activity was 180 plus or minus 17 mU/g wet weight. Addition of glutamine to the incubation medium decreased this activity significantly (118 plus or minus 14 mU/g wet weight). This inhibition by glutamate was also diminished when 2-oxoglutarate or pyruvate were present. Glutamate added to homohentates of adipose tissue had no effect on the activation of pyruvate dehydrogenase by Mg-2+. However, glutamate inhibited the active form of the enzyme and enhanced the rate of inactivation of the enzyme complex by ATP and Mg-2+. Aminooxyacetate, a transaminase inhibitor, did not reverse the effects of glutamate on pyruvate dehydrogenase nor fatty acid synthesis.  相似文献   

19.
The effect of anaplerotic pathways activation on CO2-dependent anaerobic glucose utilization by Escherichia coli strains deficient in the main fermentation pathways and possessing a modified system of glucose transport and phosphorylation was studied. Intracellular CO2 generation in the strains was ensured resulting from oxidative decarboxylation of pyruvic acid by pyruvate dehydrogenase. Sodium bicarbonate dissolved in the medium was used as an external source of CO2. The genes of heterologous pyruvate carboxylase and native NADH-dependent malic enzyme were overexpressed in the strains to allow anaplerotic carboxylation of pyruvic acid to oxaloacetic or malic acid. The ability of the strains to reoxidize NADH utilizing carboxylation products was additionally increased due to enhanced expression of malate dehydrogenase gene. In the case of endogenous CO2 formation, the activation of anaplerotic pathways did not cause a notable increase in the anaerobic glucose consumption by the constructed strains. At the same time, the expression of pyruvate carboxylase led to a pronounced decrease in the secretion of pyruvic acid with the concomitant increase in the yield of four-carbon metabolites. Further enhancement of NADH-dependent malic enzyme expression provoked activation of a pyruvate–oxaloacetate–malate–pyruvate futile cycle in the strains. The availability in the medium of the external CO2 source sharply increased the anaerobic utilization of glucose by strains expressing pyruvate carboxylase. The activity of the futile cycle has raised with the increased malic enzyme expression and dropped upon enhancement of malate dehydrogenase expression. As a result, the efficiency of CO2-dependent anaerobic glucose utilization coupled to the formation of four-carbon carboxylation products increased in the studied strains resulting from the primary anaplerotic conversion of pyruvic acid into oxaloacetic acid followed by the involvement of the precursor formed in NADH-consuming biosynthetic reactions dominating over the reactions of the revealed futile cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号