首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT The fine structure of female accessory reproductive gland (FARG) of the adult mealworm beetle, Tenebrio molitor is studied with light and electron microscopes. The FARG is a simple tubular organ that composed of two kinds of cells-secretory epithelial cells and duct forming cells. The lumen of FARG is lined with a thin cuticle and filled with secretory materials. Each secretory epithelial cell has its peculiar end apparatus in addition to well-developed rough endoplasmic reticulum (rER), mitochondria, and secretory vesicles. They are forming basal infolding along the plasma membrane. Along the inner surface of the plasma membrane, numerous secretory vesicles are seen. The glandular secretions of the epithelial secretory cells are synthesized via rER to Golgi apparatus, and are stored in the extracellular cavity in the epithelial cell. These secretions are drained to the lumen through the end apparatus and this type of glandular secretion in the insects is type III. Histochemical reactions reveal the major component of these glandular secretions is an acid mucopolysaccharide.  相似文献   

2.
H Hirano  H Kagawa  K Okubo 《Phytochemistry》1992,31(3):731-735
When immersed in water at 50-60 degrees, mature soybean seeds release a large amount of protein. The major protein released was basic 7S globulin (Bg), which is present in the cotyledons of soybean seeds. The released Bg consisted of the 27,000 and 16,000 subunits which were linked by disulphide bonding and glycosylated. The released Bg exhibited an identical structure with the mature Bg which was synthesized in the normal developing seeds. Proteins like Bg were also found to be released into hot water from the seeds of legume species such as azuki-bean, cowpea, mung-bean and winged-bean. Besides Bg and Bg-like proteins, a few proteins including the 9,000 hydrophobic protein in soybean, ubiquitin in cowpea and mung-bean, and Kunitz trypsin inhibitor in winged-bean, were released from the seeds in hot water.  相似文献   

3.
大豆子叶内酸性磷酸酶活性的超微结构定位   总被引:6,自引:0,他引:6  
开花后35~50 d 期间和萌发早期(播种后4~8 d)的大豆(Glycinem ax L.)种子中,酸性磷酸酶主要分布在子叶细胞中的蛋白体内;在内质网内也检测到酸性磷酸酶活性。此外,在萌发早期的部分子叶细胞的质膜外侧及其细胞壁基质中可见密集的酸性磷酸酶活性;而且在近质膜的胞质中常见到一些富含磷酸铅沉淀的胞质小泡,似与质膜融合  相似文献   

4.
Parallel secretory pathways to the cell surface in yeast   总被引:21,自引:7,他引:14       下载免费PDF全文
Saccharomyces cerevisiae mutants that have a post-Golgi block in the exocytic pathway accumulate 100-nm vesicles carrying secretory enzymes as well as plasma membrane and cell-wall components. We have separated the vesicle markers into two groups by equilibrium isodensity centrifugation. The major population of vesicles contains Bg12p, an endoglucanase destined to be a cell-wall component, as well as Pma1p, the major plasma membrane ATPase. In addition, Snc1p, a synaptobrevin homologue, copurifies with these vesicles. Another vesicle population contains the periplasmic enzymes invertase and acid phosphatase. Both vesicle populations also contain exoglucanase activity; the major exoglucanase normally secreted from the cell, encoded by EXG1, is carried in the population containing periplasmic enzymes. Electron microscopy shows that both vesicle groups have an average diameter of 100 nm. The late secretory mutants sec1, sec4, and sec6 accumulate both vesicle populations, while neither is detected in wild-type cells, early sec mutants, or a sec13 sec6 double mutant. Moreover, a block in endocytosis does not prevent the accumulation of either vesicle species in an end4 sec6 double mutant, further indicating that both populations are of exocytic origin. The accumulation of two populations of late secretory vesicles indicates the existence of two parallel routes from the Golgi to the plasma membrane.  相似文献   

5.
Localization of carboxyl proteinase (cathepsin D) and cysteine proteinases (cathepsins B, H, and L) in Golgi region was studied using an immunoenzyme technique. Rat livers and kidneys were used. The results obtained from the livers were similar to those from the kidneys. All cathepsins were detected in lysosomal compartments such as secondary lysosomes, multivesicular bodies (endosomes), and autophagosomes. Rough endoplasmic reticulum (rER), including nuclear envelope was focally stained. Most of Golgi cisternae were negative, but sometimes only one cisterna or the terminal portion of the cisterna were stained focally. Rarely, the trans Golgi network (TGN) was positive for the proteinases. Among numerous Golgi vesicles, only a few of them were stained. The positive vesicles were divided into two groups, one had a bristle coat and heavily stained, and other were smaller than 40 nm in diameter and weakly stained. The small vesicles seemed to bud from the ER and to fuse with the Golgi cisternae, while the large clathrin-coated vesicles seem to bud from the TGN. The results suggests that cathepsins are transported by vesicular system from the rER to lysosomes via Golgi apparatus. In addition, it is suggested that the small vesicles transport the proteinases from the ER to the Golgi cisternae and the large clathrin-coated vesicles from the Golgi cisternae to the lysosomes.  相似文献   

6.
FAHN  A.; BENAYOUN  J. 《Annals of botany》1976,40(4):857-863
Development of the resin duct cavity, sites of resin synthesisin the epithelial cells and elimination of resin from the protoplastwere studied in roots of young Pinus halepensis seedlings. Itis suggested that the Golgi bodies are involved in dissolutionof the middle lamella in the region of the future duct cavityby secretion of lytic enzymes into the cell walls. In earlystages of duct development osmiophilic droplets were observedin plastids, periplastidal and cytoplasmic ER, Golgi vesicles,mitochondria, nuclear envelope and in the cytoplasm. In thelatter they were often observed to be surrounded by a membrane.Electron micrographs suggested that elimination of resin dropletsfrom the protoplast occurs by their becoming surrounded by plasmalemmainvaginations.  相似文献   

7.
We have localized two cell-wall-matrix polysaccharides, the main pectic polysaccharide, rhamnogalacturonan I (RG-I), and the hemicellulose, xyloglucan (XG), in root-tip and leaf tissues of red clover (Trifolium pratense L.) using immunoelectron microscopy. Our micrographs show that in both leaf and root tissues RG-I is restricted to the middle lamella, with 80–90% of the label associated with the expanded regions of the middle lamella at the corner junctions between cells. Xyloglucan, however, is nearly exclusively located in the cellulose-microfibril-containing region of the cell wall. Thus, these cell-wall-matrix polysaccharides are present in distinct and complementary regions of the cell wall. Our results further show that during cell expansion both RG-I and XG are present within Golgi cisternae and vesicles, thus confirming that the Golgi apparatus is the main site of synthesis of the non-cellulosic cell-wall polysaccharides. No label is seen over the endoplasmic reticulum, indicating that synthesis of these complex polysaccharides is restricted to the Golgi. The distribution of RG-I and XG in root-tip cells undergoing cell division was also examined, and it was found that while XG is present in the Golgi stacks and cell plate during cytokinesis, RG-I is virtually absent from the forming cell plate.Abbreviations ER endoplasmic reticulum - RG-I rhamnogalacturonan I - XG xyloglucan  相似文献   

8.
Summary Localization of carboxyl proteinase (cathepsin D) and cysteine proteinases (cathepsins B, H, and L) in Golgi region was studied using an immunoenzyme technique. Rat livers and kidneys were used. The results obtained from the livers were similar to those from the kidneys. All cathepsins were detected in lysosomal compartments such as secondary lysosomes, multivesicular bodies (endosomes), and autophagosomes. Rough endoplasmic reticulum (rER), including nuclear envelope was focally stained. Most of Golgi cisternae were negative, but sometimes only one cisterna or the terminal portion of the cisterna were stained focally. Rarely, the trans Golgi network (TGN) was positive for the proteinases. Among numerous Golgi vesicles, only a few of them were stained. The positive vesicles were divided into two groups, one had a bristle coat and heavily stained, and other were smaller than 40 nm in diameter and weakly stained. The small vesicles seemed to bud from the ER and to fuse with the Golgi cisternae, while the large clathrin-coated vesicles seem to bud from the TGN. The results suggests that cathepsins are transported by vesicular system from the rER to lysosomes via Golgi apparatus. In addition, it is suggested that the small vesicles transport the proteinases from the ER to the Golgi cisternae and the large clathrin-coated vesicles from the Golgi cisternae to the lysosomes.  相似文献   

9.
In the cotyledon cells of the developing seeds (35~50 d after flowering) and the early germinating seeds (4 ~ 8 d after sowing) of soybean (Glycine max L. ), acid phosphatase (APase) activity was mainly deposited in the protein bodies (PB) and in endoplasmic reticulum (ER). In addition, in the early developing cotylendon cells, the prominent reaction product of APase activity was seen along the plasma membrane, in the cell wall and within the vesicles in the cytoplasm adjancent to the plasma membrane. And some of the vesicles seemed to be fused with the plasma membrane.  相似文献   

10.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

11.
The G protein of vesicular stomatitis virus is a transmembrane glycoprotein that is transported from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane via the Golgi apparatus. Pulse-chase experiments suggest that G is transported to the cell surface in two successive waves of clathrin-coated vesicles. The oligosaccharides of G protein carried in the early wave are of the "high-mannose" (G1) form, whereas the oligosaccharides in the second, later wave are of the mature "complex" (G2) form. the early wave is therefore proposed to correspond to transport of G in coated vesicles from the endoplasmic reticulum to the Golgi apparatus, and the succeeding wave to transport from the Golgi apparatus to the plasma membrane. The G1- and G2-containing coated vesicles appear to be structurally distinct, as judged by their differential precipitation by anticoated vesicle serum.  相似文献   

12.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

13.
Transfer of phosphatidylinositol (PI) between membranes was reconstituted in a cell-free system using membrane fractions isolated from dark-grown soybean (Glycine max [L.] Merr.). Donor membrane vesicles contained [3H]myo-inositol-labeled PI. A fraction enriched in endoplasmic reticulum was a more efficient donor than its parent microsomal membrane fraction. As acceptor, cytoplasmic side-out plasma membrane vesicles were more efficient than cytoplasmic side-in plasma membrane vesicles. Endoplasmic reticulum was also an efficient acceptor, suggesting that transfer occurred to cytoplasmic membrane leaflets. PI transfer was time and temperature dependent but did not require cytosolic proteins, ATP, GTP, cytosol, and acyl-coenzyme A. These results suggest that neither lipid transfer proteins nor transition vesicles, similar to those involved in vesicle trafficking from endoplasmic reticulum to the Golgi apparatus, were involved. In the presence of Mg2+ and ATP, endoplasmic reticulum PI was not metabolized, whereas PI transferred to the plasma membrane was metabolized into phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate. To summarize, the cell-free transfer of endoplasmic reticulum-derived PI was distinct from, for example, vesicle transport from endoplasmic reticulum to Golgi apparatus, not only in its regulation but also in its acceptor unspecificity.  相似文献   

14.
Reichert's membrane and the endodermal cells of the parietal yolk sac were examined for the presence of laminin antigenicity using anti-laminin antibodies and the peroxidase-antiperoxidase sequence. Immunostaining was observed through the full width of Reichert's membrane and within endodermal cells. In these cells immunostaining was observed in rough endoplasmic reticulum (rER) cisternae and Golgi apparatus. The Golgi staining could occur in any saccule, but predominated in components interpreted as the last saccule of the stack, the GERL element, and associated prosecretory granules. The secretory granules found in the ectoplasm were also immunostained. Finally, multivesicular bodies showed some staining. The immunostaining of Reichert's membrane indicates the presence of laminin itself, while that of rER cisternae and the Golgi apparatus is attributed to laminin precursors. Presumably the biosynthesis of laminin occurs along the usual protein pathway, that is, from rER through Golgi saccules and the GERL element to secretory granules, which release their content into Reichert's membrane. The laminin immunostaining of Reichert's membrane and endodermal cells is similar to that of type IV collagen. It is, therefore, likely that the two substances are processed and secreted simultaneously.  相似文献   

15.
Tri-lamellar bodies were observed in eight of 29 isolates of Nostoc examined. They appeared identical to the previously described bodies in various species of Anabaena. The bodies consist of three discoid lamellae each ca. 0.3 μm diam and 8 nm thick. The outer lamella (closest to the plasma membrane) is separated from the middle lamella by a 12 nm space whereas the middle and inner lamellae are ca. 8 nm apart. Osmiophilic striations 3 nm wide were generally observed running between the lamellae. Osmiophilic β granules were usually associated with the inner lamella. The bodies were most always located close to the plasma membrane along the longitudinal wall near the junction of the cross and longitudinal walls. In three isolates the bodies located near the cross walls were associated with gas vesicles and possessed a slightly different morphology. These tri-lamellar bodies consisted of three discoid lamellae, each ca. 2 nm thick, ca. 25 nm apart with electron dense material between the inner and middle lamellae. Pores 20 nm diam and ca. 60 nm apart were observed in layer 2 of the cell wall adjacent to the tri-lamellar bodies. These wall pores were also observed in isolates lacking tri-lamellar bodies.  相似文献   

16.
Swiatek P 《Tissue & cell》2006,38(4):263-270
By the end of previtellogenesis, the oocytes of Glossiphonia heteroclita gradually protrude into the ovary cavity. As a result they lose contact with the ovary cord (which begins to degenerate) and float freely within the hemocoelomic fluid. The oocyte's ooplasm is rich in numerous well-developed Golgi complexes showing high secretory activity, normal and transforming mitochondria, cisternae of rER and vast amounts of ribosomes. The transforming mitochondria become small lipid droplets as vitellogenesis progresses. The oolemma forms microvilli, numerous coated pits and vesicles occur at the base of the microvilli, and the first yolk spheres appear in the peripheral ooplasm. A mixed mechanism of vitellogenesis is suggested. The eggs are covered by a thin vitelline envelope with microvilli projecting through it. The envelope is formed by the oocyte. The vitelline envelope is produced by exocytosis of vesicles containing two kinds of material, one of which is electron-dense and seems not to participate in envelope formation. The cortical ooplasm of fully grown oocytes contains many cytoskeletal elements (F-actin) and numerous membrane-bound vesicles filled with stratified content. Those vesicles probably are cortical granules. The follicle cells surrounding growing oocytes have the following features: (1) they do not lie on a basal lamina; (2) their plasma membrane folds deeply, forming invaginations which eventually seem to form channels throughout their cytoplasm; (3) the plasma membrane facing the ovary lumen is lined with a layer of dense material; and (4) the plasma membrane facing the oocyte forms thin projections which intermingle with the oocyte microvilli. In late oogenesis, the follicle cells detach from the oocytes and degenerate in the ovary lumen.  相似文献   

17.
The ultrastructural localization of copper, zinc-superoxide dismutase (Cu, Zn-SOD) in the liver of patients with acute hepatitis, chronic hepatitis, liver cirrhosis and alcoholic fatty liver was studied by means of the indirect immunoperoxidase technique. In hepatocytes Cu, Zn-SOD was found to be localized in perinuclear cisternae, rough endoplasmic reticulum (rER), vesicles and Golgi apparatus. The Cu, Zn-SOD was also detected around the lipid droplets in hepatocytes as well as on the cytoplasmic membrane in cases of liver cirrhosis. These findings suggest that Cu, Zn-SOD is produced in the rER in hepatocytes and protects the cells from cellular injury caused by superoxide anion radical in various disorders of the liver.  相似文献   

18.
Summary Rosettes of six particles have been visualized by freeze-fracture in the protoplasmic fracture (PF) faces of: a) the plasma membrane, b) Golgi cisternae, and c) Golgi-derived vesicles in mesophyll cells ofZinnia elegans that had been induced to differentiate synchronously into tracheary elements in suspension culture. These rosettes have been observed previously in the PF face of the plasma membranes of a variety of cellulose-synthesizing cells and are thought to be important in cellulose synthesis. InZinnia tracheary elements, the rosettes are localized in the membrane over regions of secondary wall thickening and are absent between thickenings. The observation of rosettes in the Golgi cisternae and vesicles suggests that the Golgi apparatus is responsible for the selective transport and exocytosis of rosettes in higher plants, as has been previously indicated in the algaMicrasterias (Giddings et al. 1980). The data presented indicate that the Golgi apparatus has a critical role in the control of cell wall deposition because it is involved not only in the synthesis and export of matrix components but also in the export of an important component of the cellulose synthesizing apparatus. The rosettes are present in the plasma membrane and Golgi vesicles throughout the enlargement of the secondary thickening, suggesting that new rosettes must be continually inserted into the membrane to achieve complete cell wall thickening.Abbreviations EF Golgi vesicles, exoplasmic fracture; the plasma membrane, extracellular fracture - PF protoplasmic fracture  相似文献   

19.
荞麦子叶发育过程中聚合的粗糙内质网   总被引:3,自引:0,他引:3  
高新起  王秀玲 《植物研究》2002,22(1):30-32,T001
在荞麦(Fagopyrum esculentum Moench.)子叶的发育过程中观察到粗糙内质网的聚合现象,是一些粗糙内质网平行或成环形排列形成的。这些聚合的粗糙内质网附近通常有蛋白质团块存在,其形状不规则,无膜包被,与周围细胞质的界限不清。推测这些蛋白质团块不是在液泡或膨大的粗糙内质网囊泡中积累形成的,而是由聚合的粗糙内质网直接将合成的蛋白质分泌到细胞质中形成的。这种形式提高了子叶中贮存蛋白质的积累效率。  相似文献   

20.
Highly purified plasma membrane was prepared from etiolated zucchini hypocotyls, developing pea cotyledons and suspension-cultured soybean cells by phase partitioning and sucrose density gradient centrifugation. The brain β-adaptin monoclonal antibody B1/M6, which recognizes a similar adaptin in zucchini clathrin coated vesicles, cross-reacted with an electrophoretically identical polypeptide in the plant plasma membrane fractions. Immunogold labelling of thin sections of soybean cells confirmed the presence of the β-adaptin at the plasma membrane. The presence of this adaptin at the Golgi apparatus could not be demonstrated unequivocally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号