首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazol-2-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (11a-n) and (2R,3S)-2-(2,4-difluorophenyl)-3-(5-[2-[4-aryl-piperazin-1-yl]-ethyl]-tetrazole-1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol (12a-n) has been synthesized. The antifungal activity of compounds was evaluated by in vitro agar diffusion and broth dilution assay. Compounds 11d and its positional isomer 12d having 3-trifluoromethyl substitution on the phenyl ring of piperazine demonstrated significant antifungal activity against variety of fungal cultures (Candida spp. C. neoformans and Aspergillus spp.). The compound 12d showed MIC value of 0.12 microg/mL for C. albicans, C. albicans V-01-191A-261 (resistant strain); 0.25 microg/mL for C. tropicalis, C. parapsilosis ATCC 22019 and C. krusei and MIC value of 0.5 microg/mL for C. glabrata, C. krusei ATCC 6258, which is comparable to itraconazole and better than fluconazole. Further, compound 11d showed significant activity (MIC; 0.25-0.5 microg/mL) against Candida spp. and strong anticryptococcal activity (MIC; 0.25 microg/mL) against C. neoformans.  相似文献   

2.
A series of fluconazole (1) analogues, compounds 3a-k, were prepared as potential antifungal agents. They were designed by computational docking experiments to the active site of the cytochrome P450 14alpha-sterol demethylase (CYP51), whose crystal structure is known. Preliminary biological tests showed that most of the target compounds exhibit significant activities against the eight most-common pathogenic fungi. Thereby, the most potent congener, 1-[(4-tert-butylbenzyl)(cyclopropyl)amino]-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3j), was found to exhibit a broad antifungal spectrum, being more active against Candida albicans, Candida tropicalis, Cryptococcus neoformans, Microsporum canis, and Trichophyton rubrum (MIC80 < 0.125 microg/ml) than the standard clinical drug itraconazole (2). The observed affinities of the lead molecules towards CYP51 indicate that a cyclopropyl residue enhances binding to the target enzyme. Our results may provide some guidance for the development of novel triazole-based antifungal lead structures.  相似文献   

3.
A series of 1-(substituted biaryloxy)-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl) propan-2-ol were synthesized and their antifungal activities were evaluated against eight human pathogenic fungi in vitro. Seventeen compounds showed activity 4- to 64-fold higher than voriconazole against Candida albicans. SAR clearly suggested that introduction of a biaryloxy side chain greatly enhanced the antifungal activity of triazole analogs against Candida species.  相似文献   

4.
The increasing clinical importance of drug-resistant fungal pathogens has urged additional need to fungal research and new antifungal compound development. For this purpose, some N-(1-benzyl-2-phenylethylidene)-N'-[4-(aryl)thiazol-2-yl]hydrazone (1a-e) and N-(1-phenylbutylidene)-N'-[4-(aryl)thiazol-2-yl]hydrazone (2a-e) derivatives were synthesised and evaluated for antifungal activity. Their antifungal activities against standard and clinical strands of Candida albicans, Candida glabrata, Candida utilis, Candida tropicalis, Candida krusei, Candida zeylanoides, and Candida parapsilosis were investigated. A significant level of activity was observed.  相似文献   

5.
New 2-(2,4-dihalogenophenyl)-1-(1H-imidazol-1-yl)-3-(isoxazol-5-yl)propan-2-ols and 2-(2,4-dihalogenophenyl)-1-(1H-imidazol-1-yl)-3-(4,5-dihydroisoxazol-5-yl)propan-2-ols were synthesized by 1,3-dipolar cycloaddition between homopropargylic or homoallylic alcohols and in-situ generated nitrile oxide. Their antifungal activity was evaluated against Candida albicans, C. glabrata, Aspergillus fumigatus and an azole-resistant petite mutant of C. glabrata. Preliminary SAR results are discussed.  相似文献   

6.
The antifungal activity in vitro of the newly synthesized and previously reported compounds of 5-substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole series was evaluated. Their structures were confirmed by elemental analyses and IR, 1H and 13C NMR and mass spectra. The azole-resistant clinical isolates of C. albicans and nonalbicans Candida spp. were used in the antifungal tests. Some compounds exhibit higher activities than the comparatively studied antifungal drugs. 2-Amino-1,3,4-thiadiazole derivatives exhibited higher (than other analogues) antifungal effects against Candida nonalbicans spp. than against C. alhicans. Derivatives with strong antifungal activity have a narrow range of lipophilicity values determined by the Villar approach.  相似文献   

7.
The increasing clinical importance of drug-resistant fungal pathogens has urged additional need to fungal research and new antifungal compound development. For this purpose, some N-(1-benzyl-2-phenylethylidene)-N′-[4-(aryl)thiazol-2-yl]hydrazone (1a-e) and N-(1-phenylbutylidene)-N′-[4-(aryl)thiazol-2-yl]hydrazone (2a-e) derivatives were synthesised and evaluated for antifungal activity. Their antifungal activities against standard and clinical strands of Candida albicans, Candida glabrata, Candida utilis, Candida tropicalis, Candida krusei, Candida zeylanoides, and Candida parapsilosis were investigated. A significant level of activity was observed.  相似文献   

8.
A series of (S)-N-(3-chloro-1,4-naphthoquinon-2-yl)-alpha-amino acid ethyl esters 3 and 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones 6-23 were synthesized and evaluated for antifungal and antibacterial activities. The structure-activity relationship of these compounds was studied and the results show that the compounds 3a and 3b exhibited in vitro antifungal activity against Candida albicans, Cryptococcus neoformans, and Sporothrix schenckii whereas compounds 12 and 22 showed in vitro antibacterial activity against Klebsiella pneumoniae and Escherichia coli.  相似文献   

9.
A series of (S)-N-(1,4-naphthoquinon-2-yl)-alpha-amino acid methyl esters 3-9, 2-N,N-dialkylamino-1,4-naphthoquinones 10-11 and 2-hydroxy-3-(2'-mercaptoimidazolyl)-1,4-naphthoquinones and their cyclic analogs 12-15 were synthesized and evaluated for antifungal and antibacterial activities. The structure-activity relationships of these compounds were studied and the results show that the compounds 9b and 13c exhibited in vitro antifungal activity against Candida albicans, Cryptococcus neoformans, and Sporothrix schenckii, whereas compound 6a showed in vitro antibacterial activity against Streptococcus faecalis, K. pneumoniae, Escherichia coli, and Staphylococcus aureus.  相似文献   

10.
A new 'phenylpropanoid', 4-(3-methyloxiran-2-yl)phenyl 2-methylbutanoate (1), a new trinorsesquiterpene, 4-(6-methylbicyclo[4.1.0]hept-2-en-7-yl)butan-2-one (2), and eight known compounds (3-10) were isolated from the essential oils of several Pimpinella species growing in Turkey. The structures of the new compounds were determined by 1D- and 2D-NMR analyses. The absolute configuration of 1 was established via comparison of its optical rotation with that of 'epoxypseudoisoeugenyl 2-methylbutyrate' (11), the absolute configuration of which was determined by chemical degradation and an appropriate Mosher ester formation. Direct bioautography revealed antifungal activity of 1 and 11 against Colletotrichum acutatum, C. fragariae, and C. gloesporioides. Subsequent evaluation of antifungal compounds in a 96-well microtiter assay showed that compounds 1 and 11 produced the most-significant growth inhibition in Phomopsis spp., Colletotrichum spp., and Botrytis cinerea. Compounds 1 and 6 displayed antimicrobial activities against Mycobacterium intracellulare, with IC50 values of 2.78 and 1.29 microM, respectively.  相似文献   

11.
Antiproliferative and antifungal activities of essential oils from Erigeron acris root and herb and from Erigeron annuus herb were investigated. The cell viability assay was performed in cultured fibroblasts, cancer cell lines (MCF-7 and MDA-MBA-231), and endometrial adenocarcinoma (Ishikawa) cells as well as colon adenocarcinoma (DLD-1) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The essential oil from E. acris root showed the highest antiproliferative activity in the MCF-7 cell line with an IC50 value of 14.5 microg/mL. No effect of the essential oil on normal cells at that concentration was found. Antifungal activity against various strains of five Candida species, i.e. C. albicans, C. glabrata, C. tropicalis, C. krusei, and C. parapsilosis, was tested by the microdilution method. It was found that all examined oils can be useful as antifungal agents against the above-mentioned species, but the essential oil of E. acris herb was the most active. Their minimum inhibitory concentrations (MIC) ranged from 30 to 0.4 microL/mL. The data presented suggest that essential oils from E. acris and E. annuus possess antifungal activity against Candida spp. and antiproliferative activity against breast cancer MCF-7 cells.  相似文献   

12.
In the present study we have synthesized (4-nitrophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanones, (2-bromophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanone analogues (1–14) and evaluated them for their antimicrobial and antiviral potential. The results of antimicrobial screening indicated that none of the synthesized compounds were effective against the tested bacterial strains. Compounds 3, 11, 13 and compounds 5, 11, 12 were found to be active against Aspergillus niger and Candida albicans respectively, and may be further developed as antifungal agents. Furthermore, evaluation against a panel of different viruses pointed out the selective activity of compounds 5 and 6 against vaccinia virus and Coxsackie virus B4.  相似文献   

13.
A novel Candida albicans chitin synthase 1 (CaChs1) inhibitor, RO-41-0986 (1) was discovered by random screening. Systematic modification led to the identification of a highly potent CaChs1 inhibitor, RO-09-3024 (2), having strong antifungal activity against Candida spp. in vitro.  相似文献   

14.
1-(3,5-Diaryl-4,5-dihydro-1H-pyrazol-4-yl)-1H-imidazole derivatives were synthesized and tested for their in vitro antifungal and antimycobacterial activities. These imidazole derivatives showed an excellent antifungal activity against a clinical strain of Candida albicans and an interesting antitubercular activity against Mycobacterium tuberculosis H(37)Rv reference strain.  相似文献   

15.
A new 8-hydroxy briarane diterpenoid (compound 1) with antifungal activity was isolated along with known compounds (2-5) from the gorgonian coral Junceellajuncea. On the basis of spectroscopic data (1D and 2D NMR, MS), the structure of the compound 1 was established as (1S,2S,8S,9S,10S,11R,12R,14S,17R)-11,20-epoxy-14-(3-methylbutanoyl)-2,9,12-triacetoxy-8-hydroxybriar-5(16)-en-18,7-olide. Compound 1 exhibited significant activity against fungi (Aspergillus niger, Candida albicans and Penicillium notatum) but the other compounds (2-5) did not exhibit the activity against fungi.  相似文献   

16.
During the course of our studies in the azole antifungals area, we synthesized a number of 1,5-disubstituted 4-[1H-imidazol-1-yl(phenyl)methyl]-1H-pyrazoles, analogues of bifonazole. 1,5-Diphenyl-1H-pyrazole 3 showed weak antimycotic and antibacterial activities in vitro against Candida albicans, Cryptococcus neoformans and Staphylococcus aureus. In order to increase these properties, given that the halo substitution was found to be capable of enhancing antifungal effects, we prepared a series of fluoro and chloro derivatives of 3. The microbiological evaluation carried out on newly synthesized compounds included in vitro assays for antifungal, antibacterial and antimycobacterial activities. Among the tested compounds, some dichloro and trichloro-derivatives showed interesting antimicrobial properties. In particular, compounds 10j,k,l produced inhibitory effects against pathogen representatives of yeast (C. albicans, C. neoformans) and Gram positive bacteria (S. aureus) similar or superior to those of bifonazole. In addition, their activity against Mycobacterium tuberculosis was superior to that of clotrimazole and econazole, which were used as reference drugs. The replacement, in these compounds, of chlorine with fluorine atoms led to inactive derivatives. Docking studies were carried out on the most active compounds, in order to rationalize the pharmacological results.  相似文献   

17.
AIMS: The antifungal activity of amyrin pentacyclic triterpene and 15 synthetic derivatives was evaluated against Candida species. Additionally, inhibition of adhesion of Candida albicans to human epithelial cells in vitro was determined. METHODS AND RESULTS: Esterification of alpha- and beta-amyrin with a variety of acyl chlorides produced a series of analogue derivatives. These substances were synthesized to evaluate the antifungal properties against Candida species. Among the 15 derivatives, alpha- and beta-amyrin formiate (2) and alpha- and beta-amyrin acetate (3) were the most active, inhibiting all the Candida species tested in concentrations that ranged from 30 to 250 microg ml(-1). alpha- and beta-amyrin formiate inhibited the adhesion ability of C. albicans to buccal epithelial cells (BEC) in 65.3%. CONCLUSIONS: alpha- and beta-amyrin formiate and alpha- and beta-amyrin acetate derivatives exhibited potential antifungal activity against Candida spp. and amyrin formiate showed inhibition of the adhesion ability of C. albicans to buccal epithelial cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated that two derivatives of amyrin pentacyclic triterpene exhibited significant antifungal activity against Candida species. Additionally, alpha- and beta-amyrin formiate was as effective as fluconazole in inhibiting the adhesion of C. albicans to buccal epithelial cells.  相似文献   

18.
In order to find novel potential antifungal agrochemicals, a series of new 4-(1,2,4-oxadiazol-3-yl)-N-(4-phenoxyphenyl)benzamide derivatives 3a – j were designed, synthesized and characterized by their 1H - , 13C-NMR and HRMS spectra. The preliminary antifungal assay in vitro revealed that compounds 3a – j exhibited moderate to good antifungal activity against five plant pathogenic fungi. Especially, compound 3e presented significant antifungal activity against Alternaria solani, Botrytis cinerea and Sclerotinia sclerotiorum, superior to positive control boscalid. In the in vivo antifungal assay on tomato plants and cucumber leaves, compound 3e presented good inhibition rate against B. cinerea at 200 mg/L. Molecular dynamics simulation revealed that compound 3e could bind with the active site of class II histone deacetylase (HDAC).  相似文献   

19.
This study compared the minimum inhibitory concentration (MIC) results from the proposed standard methods of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing (AFST-EUCAST) with the commercial system Etest(R) in the evaluation of susceptibility to flucytosine, fluconazole, itraconazole, voriconazole, and amphotericin B of 136 Candida spp. isolated from the blood of hospitalized children. The results presented a greater agreement among Etest(R) MICs +/-2 log2 dilutions of AFST-EUCAST for fluconazole (98.1% and 96.3%) and voriconazole (100% and 100%) for Candida albicans and Candida parapsilosis. For Candida glabrata, the agreement was greater only for fluconazole (81.8%) and voriconazole (100%). For amphotericin B, the agreement between the methods was low for all species. The agreement percentage among the Etest(R) and AFST-EUCAST susceptibility profiles was high according to the MIC breakpoints recommended by the M27-A2 protocol for the majority of the yeasts, except for fluconazole and itraconazole against Candida tropicalis and for itraconazole against C. glabrata and Candida krusei. According to both methodologies, a great number of Candida spp. isolates showed an in vitro susceptibility to all evaluated antifungal agents. Overall, both procedures can be reliable techniques for susceptibility tests of yeasts, but the assessment of interlaboratory agreement and correlation of MICs by different methods with in vivo response are of great importance.  相似文献   

20.
The versatile synthons 4-(2-bromoacetyl)-5-methyl-1-phenyl-3-phenylcarbamoyl-1H-pyrazole (3) and 4-[(E)-3-(dimethylamino)acryloyl]-5-methyl-1-phenyl-3-phenylcarbamoyl-1H-pyrazole (2) were used as precursors for the synthesis of a series of phenylpyrazoles with different aromatic ring systems at position 4. The antimicrobiological evaluation of the newly synthesized compounds was carried out in vitro assays for antifungal and antibacterial activities. Amongst the tested compounds, 4-acetyl-5-methyl-1-phenyl-3-phenylcarbamoyl-1H-pyrazole (1), 4-[(E)-3-(dimethylamino)acryloyl]-5-methyl-1-phenyl-3-phenylcarbamoyl-1H-pyrazole (2), 4-(2-bromoacetyl)-5-methyl-1-phenyl-3-phenylcarbamoyl-1H-pyrazole (3) and 4-(2-aminothiazol-4-yl)-5-methyl-1-phenyl-3-phenylcarbamoyl-1H-pyrazole (17) showed interesting antimicrobial properties. In particular, all tested compounds produced inhibitory effects against pathogenic yeast (Candida albicans) similar or superior to those of reference drug. In addition, compound 3 showed excellent activity against pathogenic mould (Aspergillus). From structure-activity relationship (SAR) point of view, the attachment of bromoacetyl moiety to pyrazole ring can be considered as a breakthrough in developing a new therapeutic antifungal agent related to phenylpyrazole system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号