首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
Li J  Xia F  Li WX 《Developmental cell》2003,5(5):787-798
Primordial germ cells (PGCs) undergo proliferation, invasion, guided migration, and aggregation to form the gonad. Here we show that in Drosophila, the receptor tyrosine kinase Torso activates both STAT and Ras during the early phase of PGC development, and coactivation of STAT and Ras is required for PGC proliferation and invasive migration. Embryos mutant for stat92E or Ras1 have fewer PGCs, and these cells migrate slowly, errantly, and fail to coalesce. Conversely, overactivation of these molecules causes supernumerary PGCs, their premature transit through the gut epithelium, and ectopic colonization. A requirement for RTK in Drosophila PGC development is analogous to the mouse, in which the RTK c-kit is required, suggesting a conserved molecular mechanism governing PGC behavior in flies and mammals.  相似文献   

2.
In most animals, primordial germ cell (PGC) specification and development depend on maternally provided cytoplasmic determinants that constitute the so-called germ plasm. Little is known about the role of germ plasm in vertebrate germ cell development, and its molecular mode of action remains elusive. While PGC specification in mammals occurs via different mechanisms, several germ plasm components required for early PGC development in lower organisms are expressed in mammalian germ cells after their migration to the gonad and are involved in gametogenesis. Here we show that the RNA of dead end, encoding a novel putative RNA binding protein, is a component of the germ plasm in zebrafish and is specifically expressed in PGCs throughout embryogenesis; Dead End protein is localized to perinuclear germ granules within PGCs. Knockdown of dead end blocks confinement of PGCs to the deep blastoderm shortly after their specification and results in failure of PGCs to exhibit motile behavior and to actively migrate thereafter. PGCs subsequently die, while somatic development is not effected. We have identified dead end orthologs in other vertebrates including Xenopus, mouse, and chick, where they are expressed in germ plasm and germ-line cells, suggesting a role in germ-line development in these organisms as well.  相似文献   

3.
Smad5 is required for mouse primordial germ cell development   总被引:9,自引:0,他引:9  
Smad5, together with Smad1 and Smad8, have been implicated as downstream signal mediators for several bone morphogenetic proteins (BMPs). Recent studies have shown that primordial germ cells (PGCs) are absent or greatly reduced in Bmp4 or Bmp8b mutant mice. To define the role of Smad5 in PGC development, we examined PGC number in Smad5 mutant mice by Oct4 whole-mount in situ hybridization and alkaline phosphatase staining. We found ectopic PGC-like cells in the amnion of some Smad5 mutant mice, however, the total number of PGCs was greatly reduced or completely absent in Smad5 mutant embryos, similar to Bmp4 or Bmp8b mutant embryos. Therefore, Smad5 is an important factor involved in PGC generation and localization.  相似文献   

4.
In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus.EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wild-type Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination.  相似文献   

5.
6.
7.
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.  相似文献   

8.
Chaperone proteins are considered to be fairly ubiquitous proteins that promote the correct folding and assembly of multiple newly synthesized proteins. While performing an embryonic screen in zebrafish using morpholino phosphorodiamidate oligonucleotides (MPOs), we identified a role for an endoplasmic reticulum chaperone protein family member, zebrafish GP96. Knockdown of GP96 resulted in a specific otolith formation defect during early ear development. Otolith precursor particles did not adhere to the kinocilia of the tether cells in the GP96-MPO-injected embryos, aggregating instead into a single clump. Although otolith development was abnormal, the patterning of the ear and the differentiation of tether cells and macular sensory and support cells was not affected. We have isolated and sequenced the full open reading frame of zebrafish GP96 and characterized its expression pattern. GP96 is expressed both maternally and zygotically. GP96 RNA is localized within the floorplate, hatching gland, and in the cells of the otic placode and otic vesicle, consistent with the function of GP96 in ear development. We conclude that the GP96 chaperone protein is involved in the otolith formation during normal ear development. This is the first report of a specific function during organism development being attributed to a chaperone class molecule.  相似文献   

9.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

10.
Xdazl is an RNA component of Xenopus germ plasm and encodes an RNA-binding protein that can act as a functional homologue of Drosophila boule. boule is required for entry into meiotic cell division during fly spermatogenesis. Both Xdazl and boule are related to the human DAZ and DAZL, and murine Dazl genes, which are also involved in gamete differentiation. As suggested from its germ plasm localization, we show here that Xdazl is critically involved in PGC development in Xenopus. Xdazl protein is expressed in the cytoplasm, specifically in the germ plasm, from blastula to early tailbud stages. Specific depletion of maternal Xdazl RNA results in tadpoles lacking, or severely deficient in, primordial germ cells (PGCs). In the absence of Xdazl, PGCs do not successfully migrate from the ventral to the dorsal endoderm and do not reach the dorsal mesentery. Germ plasm aggregation and intracellular movements are normal indicating that the defect occurs after PGC formation. We propose that Xdazl is required for early PGC differentiation and is indirectly necessary for the migration of PGCs through the endoderm. As an RNA-binding protein, Xdazl may regulate translation or expression of factors that mediate migration of PGCs.  相似文献   

11.
Estrogen related receptor beta (ERR-beta) is an orphan nuclear receptor specifically expressed in a subset of extra-embryonic ectoderm of post-implantation embryos. ERR-beta is essential for placental development since the ERR-beta null mutants die at 10.5dpc due to the placenta abnormality. Here, we show that the ERR-beta is specifically expressed in primordial germ cells (PGC), obviously another important cell type for reproduction. Expression of the ERR-beta mRNA in embryonic germ cells started at E11.5 as soon as PGC reached genital ridges, and persisted until E15-E16 in both sexes. Immunostaining with anti-ERR-beta antibody revealed that the ERR-beta protein is exclusively expressed in germ cells in both male and female gonads from E11.5 to E16. 5. To study function of the ERR-beta in PGC, we complemented placental defects of the ERR-beta null mutants with wild-type tetraploid embryos, and analyzed germ cell development in the rescued embryos. It was found that development of gonad and PGC was not apparently affected, but number of germ cells was significantly reduced in male and female gonads, suggesting that the ERR-beta appears to be involved in proliferation of gonadal germ cells. The rescued embryos could develop to term and grow up to adulthood. The rescued ERR-beta null male were found to be fertile, but both male and female null mutants exhibited behavioural abnormalities, implying that the ERR-beta plays important roles in wider biological processes than previously thought.  相似文献   

12.
13.
nanos1 is required to maintain oocyte production in adult zebrafish   总被引:1,自引:0,他引:1  
Development of the germline requires the specification and survival of primordial germ cells (PGCs) in the embryo as well as the maintenance of gamete production during the reproductive life of the adult. These processes appear to be fundamental to all Metazoans, and some components of the genetic pathway regulating germ cell development and function are evolutionarily conserved. In both vertebrates and invertebrates, nanos-related genes, which encode RNA-binding zinc finger proteins, have been shown to play essential and conserved roles during germ cell formation. In Drosophila, maternally supplied nanos is required for survival of PGCs in the embryo, while in adults, nanos is required for the continued production of oocytes by maintaining germline stem cells self-renewal. In mice and zebrafish, nanos orthologs are required for PGC survival during embryogenesis, but a role in adults has not been explored. We show here that nanos1 in zebrafish is expressed in early stage oocytes in the adult female germline. We have identified a mutation in nanos1 using a reverse genetics method and show that young female nanos mutants contain oocytes, but fail to maintain oocyte production. This progressive loss of fertility in homozygous females is not a phenotype that has been described previously in the zebrafish and underlines the value of a reverse genetics approach in this model system.  相似文献   

14.
Fanconi anemia is a polygenic trait hypothesized to be a DNA damage repair disease. We show that all three Fanconi anemia loci that have been cloned are expressed in the embryonic gonad during the period of primordial germ cell proliferation. Mice mutant for the Fanconi anemia complementation group C locus (Fancc) have reduced germ cell numbers as early as embryonic day E12.5, suggesting the Fancc protein functions prior to meiosis in both sexes. Depletion in the mutant occurs at a time when all three loci would be expressed in a wild-type gonad, implying a function in the early germline. Determination of the mitotic index of primordial germ cells by BrdU incorporation shows that germ cells in Fancc(-/-) mice proliferate significantly more slowly than littermate controls. This study demonstrates Fancc is required for mitotic proliferation of primordial germ cells.  相似文献   

15.
16.
17.
The development of primordial germ cells (PGCs) undergoes epigenetic modifications. The study of histone methylation in regulating PGCs is beneficial to understand the development and differentiation mechanism of germ stem cells. Notably, it provides a theoretical basis for directed induction and mass acquisition in vitro. However, little is known about the regulation of PGC formation by histone methylation. Here, we found the high enrichment of H3K4me2 in the blastoderm, genital ridges, and testis. Chromatin immunoprecipitation sequencing was performed and the results revealed that genomic H3K4me2 is dynamic in embryonic stem cells, PGCs, and spermatogonial stem cells. This trend was consistent with the H3K4me2 enrichment in the gene promoter region. Additionally, narrow region triggered PGC‐related genes (Bmp4, Wnt5a, and Tcf7l2) and signaling pathways (Wnt and transforming growth factor‐β). After knocking down histone methylase Mll2 in vitro and vivo, the level of H3K4me2 decreased, inhibiting Cvh and Blimp1 expression, then repressing the formation of PGCs. Taken together, our study revealed the whole genome map of H3K4me2 in the formation of PGCs, contributing to improve the epigenetic study in PGC formation and providing materials for bird gene editing and rescue of endangered birds.  相似文献   

18.
Mouse primordial germ cells (PGCs) are initially identified as a cluster of alkaline phosphatase (AP)-positive cells within the extraembryonic mesoderm near the posterior part of the primitive streak at embryonic day (E) 7.25. Clonal analysis of epiblast cells has revealed that the putative precursors of PGCs are localized in the proximal epiblast, and we demonstrated that the conditions required for PGC formation are induced in the proximal region of epiblasts by extraembryonic ectoderm. Bone morphogenetic protein (BMP) 4 and BMP8b, which belong to the transforming growth factor-beta (TGF-beta) superfamily, might generate induction signals from extraembryonic ectoderm. Smad1 and Smad5, which are intracellular signaling molecules for BMP4, might also play a critical role in stimulating epiblasts to form PGC. However, how pluripotential epiblasts temporally and spatially respond to BMP signals to form PGCs remains unclear. The present study examines changes of responsiveness to BMP4 for PGC formation in epiblasts and their molecular mechanisms. We initially examined the effect of recombinant human (rh) BMP4 upon cultured epiblasts at different developmental stages, and found that they acquire the ability to respond to BMP4 signals for PGC formation between E5.25 and E5.5. In addition, such competence was conferred upon epiblasts by the extraembryonic ectoderm. We also showed that the increased expression of Smad1 and the onset of Smad5 expression induced by extraembryonic ectoderm might be responsible for quick acquisition of this competence. Furthermore, we show that only proximal epiblast cells maintain responsiveness to BMP4 for PGC formation at E6.0, and that this is associated with the proximal epiblast-specific expression of Smad5. These results explain why only the proximal region of epiblasts can sustain the ability to form PGCs.  相似文献   

19.
Bax is a multidomain, proapoptotic member of the Bcl-2 family that is required for normal spermatogenesis in mice. Despite its proapoptotic function, previous results found that Bax-deficient mature male mice demonstrate increased cell death and dramatic testicular atrophy. The present study examined the role of Bax during the normal development of the testis to determine whether the increased cell death in mature mice could be explained by decreased apoptosis earlier in development. Consistent with this hypothesis, testicular atrophy is preceded by increased testicular weight and hypercellular tubules in immature Bax-deficient mice. TUNEL staining at Postnatal Day (P) 7 and morphological quantitation between P5 and P15 demonstrates decreased germ cell apoptosis in Bax-deficient mice. By P15, increased numbers of type A spermatogonia, and at P12 and P15, an increase in intermediate type spermatogonia were noted in Bax-deficient animals. By P25, the number of basal compartment cells was greatly increased in Bax-deficient animals compared with controls such that four or five layers of preleptotene spermatocytes were routinely present within the basal compartment of the testis. Although the Sertoli cell barrier was significantly removed from the basement membrane, it appeared intact as judged by the hypertonic fixation test. During late pubertal development, massive degeneration of germ cells took place, including many of those cell types that previously survived in the first wave of spermatogenesis. The data indicate that Bax is required for normal developmental germ cell death in the type A spermatogonia, specifically dividing (A(2), A(3), and A(4)) spermatogonia, at a time at which the number of spermatogonia is regulated in a density-dependent manner. The massive hyperplasia that occurs in Bax-deficient mice subsequently results in Bax independent cell death that may be triggered by overcrowding of the seminiferous epithelium.  相似文献   

20.
Abstract. Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemi-sphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses.
Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4° C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displace-ment of the germ plasm away from its original vegetal pole location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号