首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Franco R  Ma JG  Lu Y  Ferreira GC  Shelnutt JA 《Biochemistry》2000,39(10):2517-2529
Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes Fe(2+) chelation into protoporphyrin IX. Resonance Raman and UV-vis absorption spectroscopies of wild-type and engineered variants of murine ferrochelatase were used to examine the proposed structural mechanism for iron insertion into porphyrin. The recombinant variants (i.e., H207N and E287Q) are enzymes in which the conserved amino acids histidine-207 and glutamate-287 of murine ferrochelatase were substituted with asparagine and glutamine, respectively. Both of these residues are at the active site of the enzyme as deduced from the Bacillus subtilis ferrochelatase three-dimensional structure. On the basis of changes in the UV-vis absorption spectrum, addition of free-base or metalated porphyrins to wild-type ferrochelatase and H207N variant yields a 1:1 complex, most likely a monomeric protein-bound species at the active site. In contrast, the addition of porphyrin (either free base or metalated) to E287Q is substoichiometric, as this variant retains bound porphyrin in the active site during isolation and purification. The specificity of porphyrin binding is confirmed by the narrowing of the structure-sensitive lines and the vinyl vibrational mode in the resonance Raman spectra. Shifts in the resonance Raman lines of free-base and metalated porphyrins bound to the wild-type ferrochelatase indicate a nonplanar distortion of the porphyrin macrocycle. However, the magnitude of the distortion cannot be determined without first defining the specific type of deformation. Significantly, the extent of the nonplanar distortion varies in the case of H207N- and E287Q-bound porphyrins. In fact, resonance Raman spectral decompositions indicate a homogeneous ruffled deformation for the nickel protoporphyrin bound to the wild-type ferrochelatase, whereas both planar and ruffled conformations are present for the H207N-bound porphyrin. Perhaps more revealing is the unusual resonance Raman spectrum of the endogenous E287Q-bound porphyrin, which has the structure-sensitive lines greatly upshifted relative to those of the free-base protoporphyrin in solution. This could be interpreted as an equilibrium between protein conformers, one of which favors a highly distorted porphyrin macrocycle. Taken together, these findings suggest that distortion occurs in murine ferrochelatase for some porphyrins, even without metal binding, which is apparently required for the yeast ferrochelatase.  相似文献   

2.
Medlock AE  Dailey HA 《Biochemistry》2000,39(25):7461-7467
Insertion of ferrous iron into protoporphyrin IX is catalyzed by ferrochelatase (EC 4.99.1.1). Human and Schizosaccharomyces pombe forms of ferrochelatase contain a [2Fe-2S] cluster with three of the four coordinating cysteine ligands located within the 30 carboxyl-terminal residues. Saccharomyces cerevisiae ferrochelatase contains no cluster, but has comparable activity. Truncation mutants of S. cerevisiae lacking either the last 37 or 16 amino acids have no enzyme activity. Chimeric mutants of human, S. cerevisiae, and Sc. pombe ferrochelatase have been created by switching the terminal 10% of the carboxy end of the enzyme. Site-directed mutagenesis has been used to introduce the fourth cysteinyl ligand into chimeric mutants that are 90% S. cerevisiae. Activity was assessed by rescue of Deltahem H, a ferrochelatase deficient strain of Escherichia coli, and by enzyme assays. UV-visible and EPR spectroscopy were used to investigate the presence or absence of the [2Fe-2S] cluster. Only 2 of the 13 chimeric mutants that were constructed produced active enzymes. HYB, which is predominately human with the last 40 amino acids being that of S. cerevisiae, is an active protein which does not contain a [2Fe-2S] cluster. The other active chimeric mutant, HSp, is predominately human ferrochelatase with the last 38 amino acids being that of Sc. pombe ferrochelatase. This active mutant contains a [2Fe-2S] cluster, as verified by UV-visible and EPR spectroscopic techniques. No other chimeric proteins had detectable enzyme activity or a [2Fe-2S] cluster. The data are discussed in terms of structural requirements for cluster stability and the role that the cluster plays for ferrochelatase.  相似文献   

3.
Analysis of sequence alignments of alkaline phosphatases revealed a correlation between metal specificity and certain amino acid side chains in the active site that are metal-binding ligands. The Zn(2+)-requiring Escherichia coli alkaline phosphatase has an Asp at position 153 and a Lys at position 328. Co(2+)-requiring alkaline phosphatases from Thermotoga maritima and Bacillus subtilis have a His and a Trp at these positions, respectively. The mutations D153H, K328W, and D153H/K328W were induced in E. coli alkaline phosphatase to determine whether these residues dictate the metal dependence of the enzyme. The wild-type and D153H enzymes showed very little activity in the presence of Co(2+), but the K328W and especially the D153H/K328W enzymes effectively use Co(2+) for catalysis. Isothermal titration calorimetry experiments showed that in all cases except for the D153H/K328W enzyme, a possible conformation change occurs upon binding Co(2+). These data together indicate that the active site of the D153H/K328W enzyme has been altered significantly enough to allow the enzyme to utilize Co(2+) for catalysis. These studies suggest that the active site residues His and Trp at the E. coli enzyme positions 153 and 328, respectively, at least partially dictate the metal specificity of alkaline phosphatase.  相似文献   

4.
Aromatic residues in the hydrophobic core of human carbonic anhydrase II (CAII) influence metal ion binding in the active site. Residues F93, F95, and W97 are contained in a beta-strand that also contains two zinc ligands, H94 and H96. The aromatic amino acids contribute to the high zinc affinity and slow zinc dissociation rate constant of CAII [Hunt, J. A., and Fierke, C. A. (1997) J. Biol. Chem. 272, 20364-20372]. Substitution of these aromatic amino acids with smaller side chains enhances Cu(2+) affinity while decreasing Co(2+) and Zn(2+) affinity [Hunt, J. A., Mahiuddin, A., & Fierke, C. A. (1999) Biochemistry 38, 9054-9062]. Here, X-ray crystal structures of zinc-bound F93I/F95M/W97V and F93S/F95L/W97M CAIIs reveal the introduction of new cavities in the hydrophobic core, compensatory movements of surrounding side chains, and the incorporation of buried water molecules; nevertheless, the enzyme maintains tetrahedral zinc coordination geometry. However, a conformational change of direct metal ligand H94 as well as indirect (i.e., "second-shell") ligand Q92 accompanies metal release in both F93I/F95M/W97V and F93S/F95L/W97M CAIIs, thereby eliminating preorientation of the histidine ligands with tetrahedral geometry in the apoenzyme. Only one cobalt-bound variant, F93I/F95M/W97V CAII, maintains tetrahedral metal coordination geometry; F93S/F95L/W97M CAII binds Co(2+) with trigonal bipyramidal coordination geometry due to the addition of azide anion to the metal coordination polyhedron. The copper-bound variants exhibit either square pyramidal or trigonal bipyramidal metal coordination geometry due to the addition of a second solvent molecule to the metal coordination polyhedron. The key finding of this work is that aromatic core residues serve as anchors that help to preorient direct and second-shell ligands to optimize zinc binding geometry and destabilize alternative geometries. These geometrical constraints are likely a main determinant of the enhanced zinc/copper specificity of CAII as compared to small molecule chelators.  相似文献   

5.
Protoporphyrin (IX) ferrochelatase catalyses the insertion of ferrous iron into protoporphyrin IX to form haem. These ferrochelatases exist as monomers and dimers, both with and without [2Fe-2S] clusters. The motifs for [2Fe-2S] cluster co-ordination are varied, but in all cases previously reported, three of the four cysteine ligands are present in the 30 C-terminal residues and the fourth ligand is internal. In the present study, we demonstrate that a group of micro-organisms exist which possess protoporphyrin (IX) ferrochelatases containing [2Fe-2S] clusters that are co-ordinated by a group of four cysteine residues contained in an internal amino acid segment of approx. 20 residues in length. This suggests that these ferrochelatases have evolved along a different lineage than other bacterial protoporphyrin (IX) ferrochelatases. For example, Myxococcus xanthus protoporphyrin (IX) ferrochelatase ligates a [2Fe-2S] cluster via cysteine residues present in an internal segment. Site-directed mutagenesis of this ferrochelatase demonstrates that changing one cysteine ligand into serine results in loss of the cluster, but unlike eukaryotic protoporphyrin (IX) ferrochelatases, this enzyme retains its activity. These data support a role for the [2Fe-2S] cluster in iron affinity, and strongly suggest convergent evolution of this feature in prokaryotes.  相似文献   

6.
Lee LV  Poyner RR  Vu MV  Cleland WW 《Biochemistry》2000,39(16):4821-4830
H97N, H95N, and Y229F mutants of L-ribulose-5-phosphate 4-epimerase had 10, 1, and 0.1%, respectively, of the activity of the wild-type (WT) enzyme when activated by Zn(2+), the physiological activator. Co(2+) and Mn(2+) replaced Zn(2+) in Y229F and WT enzymes, although less effectively with the His mutants, while Mg(2+) was a poorly bound, weak activator. None of the other eight tyrosines mutated to phenylalanine caused a major loss of activity. The near-UV CD spectra of all enzymes were nearly identical in the absence of metal ions and substrate, and addition of substrate without metal ion showed no effect. When both substrate and Zn(2+) were present, however, the positive band at 266 nm increased while the negative one at 290 nm decreased in ellipticity. The changes for the WT and Y229F enzymes were greater than for the two His mutants. With Co(2+) as the metal ion, the CD and absorption spectra in the visible region were different, showing little ellipticity in the absence of substrate and a weak absorption band at 508 nm. With substrate present, however, an intense absorption band at 555 nm (epsilon = 150-175) with a negative molar ellipticity approaching 2000 deg cm(2) dmol(-1) appears with WT and Y229F enzymes. With the His mutants, the changes induced by substrate were smaller, with negative ellipticity only half as great. The WT, Y229F, H95N, and H97N enzymes all catalyze a slow aldol condensation of dihydroxyacetone and glycolaldehyde phosphate with an initial k(cat) of 1.6 x 10(-3) s(-1). The initial rate slowed most rapidly with WT and H97N enzymes, which have the highest affinity for the ketopentose phosphates formed in the condensation. The EPR spectrum of enzyme with Mn(2+) exhibited a drastic decrease upon substrate addition, and by using H(2)(17)O, it was determined that there were three waters in the coordination sphere of Mn(2+) in the absence of substrate. These data suggest that (1) the substrate coordinates to the enzyme-bound metal ion, (2) His95 and His97 are likely metal ion ligands, and (3) Tyr229 is not a metal ion ligand, but may play another role in catalysis, possibly as an acid-base catalyst.  相似文献   

7.
The oxaloacetate decarboxylase Na(+) pump of Klebsiella pneumoniae is an enzyme complex composed of the peripheral alpha subunit and the two integral membrane-bound subunits beta and gamma. The alpha subunit consists of the N-terminal carboxyltransferase domain and the C-terminal biotin domain, which are connected by a flexible proline/alanine-rich linker peptide. To probe interactions between the two domains of the alpha subunit and between alpha-subunit domains and the gamma subunit, the relevant polypeptides were synthesized in Escherichia coli and subjected to copurification studies. The two alpha-subunit domains had no distinct affinity toward each other and could, therefore, not be purified as a unit on avidin-sepharose. The two domains reacted together catalytically, however, performing the carboxyl transfer from oxaloacetate to protein-bound biotin. This reaction was enhanced up to 6-fold in the presence of the Zn(2+)-containing gamma subunit. On the basis of copurification with different tagged proteins, the C-terminal biotin domain but not the N-terminal carboxyltransferase domain of the alpha subunit formed a strong complex with the gamma subunit. Upon the mutation of gamma H78 to alanine, the binding affinity to subunit alpha was lost, indicating that this amino acid may be essential for formation of the oxaloacetate decarboxylase enzyme complex. The binding residues for the Zn(2+) metal ion were identified by site-directed and deletion mutagenesis. In the gamma D62A or gamma H77A mutant, the Zn(2+) content of the decarboxylase decreased to 35% or 10% of the wild-type enzyme, respectively. Less than 5% of the Zn(2+) present in the wild-type enzyme was found if the two C-terminal gamma-subunit residues H82 and P83 were deleted. Corresponding with the reduced Zn(2+) contents in these mutants, the oxaloacetate decarboxylase activities were diminished. These results indicate that aspartate 62, histidine 77, and histidine 82 of the gamma subunit are ligands for the catalytically important Zn(2+) metal ion.  相似文献   

8.
All organisms utilize ferrochelatase (EC 4.99.1.1) to catalyze the insertion of ferrous iron into protoposphyrin IX in the terminal step of the heme biosynthetic pathway. Different metal-binding affinity for the enzyme leads to changes in enzyme activity. In this work, we have cloned and over-expressed the enzyme from chironomidae in E. coli. The enzyme was purified and characterized. The recombinant enzyme showed higher enzymatic activity (four-fold increase) in the presence of copper ions and unaffected by calcium ions. Other divalent metal ions including magnesium, manganese, lead, reduced the enzyme activity by >60%. Over 90% of the enzyme activity was inhibited by Zn2+. The sequence alignment of amino acid residues reveals 83% homology with other ferrochelatases. The results of electron proton resonance (EPR) analysis showed that Fe2+ ion was present in the cluster of the recombinant enzyme complex. The recombinant enzyme also contained the [2Fe-2S] center with two-fold higher enzymatic activity than human ferrochelatase.  相似文献   

9.
Detailed structural models of di-cluster seven-iron ferredoxins constitute a valuable resource for folding and stability studies relating the metal cofactors' role in protein stability. The here reported, hemihedric twinned crystal structure at 2.0 A resolution from Acidianus ambivalens ferredoxin, shows an integral 103 residues, physiologically relevant native form composed by a N-terminal extension comprising a His/Asp Zn(2+) site and the ferredoxin (betaalphabeta)(2) core, which harbours intact clusters I and II, a [3Fe-4S](1+/0) and a [4Fe-4S](2+/1+) centres. This is in contrast with the previously available ferredoxin structure from Sulfolofus tokodai, which was obtained from an artificial oxidative conversion with two [3Fe-4S](1+/0) centres and poor definition around cluster II.  相似文献   

10.
Biotin synthase, the enzyme which catalyzes the last step of the biosynthesis of biotin, contains only (2Fe-2S)(2+) clusters when isolated under aerobic conditions. Previous results showed that reduction by dithionite or photoreduced deazaflavin converts the (2Fe-2S)(2+) to (4Fe-4S)(2+,+). However, until now, no detailed investigation concerning the fate of the (2Fe-2S)(2+) during reduction under assay conditions (NADPH, flavodoxin, flavodoxin reductase) has been realized. Here, we show by M?ssbauer spectroscopy on a partially purified fraction overexpressing the enzyme that, in the presence of a S(2)(-) source and Fe(2+), there is conversion of the predominant (2Fe-2S)(2+) clusters into a 1:1 mixture of (2Fe-2S)(2+) and (4Fe-4S)(2+). No change in this cluster composition was observed in the presence of the physiological reducing system. When the reaction was allowed to proceed by addition of the substrate dethiobiotin, the (4Fe-4S)(2+) was untouched whereas the (2Fe-2S)(2+) was degraded into a new species. This is consistent with the hypothesis that the reduced (4Fe-4S) cluster is involved in mediating the cleavage of AdoMet and that the (2Fe-2S)(2+) is the sulfur source for biotin.  相似文献   

11.
Ferrochelatase, the terminal enzyme in heme biosynthesis, catalyses metal insertion into protoporphyrin IX. The location of the metal binding site with respect to the bound porphyrin substrate and the mode of metal binding are of central importance for understanding the mechanism of porphyrin metallation. In this work we demonstrate that Zn(2+), which is commonly used as substrate in assays of the ferrochelatase reaction, and Cd(2+), an inhibitor of the enzyme, bind to the invariant amino acids His183 and Glu264 and water molecules, all located within the porphyrin binding cleft. On the other hand, Mg(2+), which has been shown to bind close to the surface at 7 A from His183, was largely absent from its site. Activity measurements demonstrate that Mg(2+) has a stimulatory effect on the enzyme, lowering K(M) for Zn(2+) from 55 to 24 micro M. Changing one of the Mg(2+) binding residues, Glu272, to serine abolishes the effect of Mg(2+). It is proposed that prior to metal insertion the metal may form a sitting-atop (SAT) complex with the invariant His-Glu couple and the porphyrin. Metal binding to the Mg(2+) site may stimulate metal release from the protein ligands and its insertion into the porphyrin.  相似文献   

12.
Ferrochelatase is the terminal enzyme of the heme biosynthetic pathway in all cells. It catalyzes the insertion of ferrous iron into protoporphyrin IX, yielding heme. In eukaryotic cells, ferrochelatase is a mitochondrial inner membrane-associated protein with the active site facing the matrix. Decreased values of ferrochelatase activity in all tissues are a characteristic of patients with protoporphyria. Point-mutations in the ferrochelatase gene have been recently found to be associated with certain cases of erythropoietic protoporphyria. During the past four years, there have been considerable advances in different aspects related to structure and function of ferrochelatase. Genomic and cDNA clones for bacteria, yeast, barley, mouse, and human ferrochelatase have been isolated and sequenced. Functional expression of yeast ferrochelatase in yeast strains deficient in this enzyme, and expression inEscherichia coli and in baculovirusinfected insect cells of different ferrochelatase cDNAs have been accomplished. A recently identified (2Fe-2S) cluster appears to be a structural feature shared among mammalian ferrochelatases. Finally, functional studies of ferrochelatase site-directed mutants, in which key amino acids were replaced with residues identified in some cases of protoporphyria, will be summarized in the context of protein structure.  相似文献   

13.
The enzyme N(1)-(5'-phosphoribosyl) adenosine-5'-monophosphate cyclohydrolase (PR-AMP cyclohydrolase) is a Zn(2+) metalloprotein encoded by the hisI gene. It catalyzes the third step of histidine biosynthesis, an uncommon ring-opening of a purine heterocycle for use in primary metabolism. A three-dimensional structure of the enzyme from Methanobacterium thermoautotrophicum has revealed that three conserved cysteine residues occur at the dimer interface and likely form the catalytic site. To investigate the functions of these cysteines in the enzyme from Methanococcus vannielii, a series of biochemical studies were pursued to test the basic hypothesis regarding their roles in catalysis. Inactivation of the enzyme activity by methyl methane thiosulfonate (MMTS) or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) also compromised the Zn(2+) binding properties of the protein inducing loss of up to 90% of the metal. Overall reaction stoichiometry and the potassium cyanide (KCN) induced cleavage of the protein suggested that all three cysteines were modified in the process. The enzyme was protected from DTNB-induced inactivation by inclusion of the substrate N(1)-(5'-phosphoribosyl)adenosine 5'-monophosphate; (PR-AMP), while Mg(2+), a metal required for catalytic activity, enhanced the rate of inactivation. Site-directed mutations of the conserved C93, C109, C116 and the double mutant C109/C116 were prepared and analyzed for catalytic activity, Zn(2+) content, and reactivity with DTNB. Substitution of alanine for each of the conserved cysteines showed no measurable catalytic activity, and only the C116A was still capable of binding Zn(2+). Reactions of DTNB with the C109A/C116A double mutant showed that C93 is completely modified within 0.5 s. A model consistent with these data involves a DTNB-induced mixed disulfide linkage between C93 and C109 or C116, followed by ejection of the active site Zn(2+) and provides further evidence that the Zn(2+) coordination site involves the three conserved cysteine residues. The C93 reactivity is modulated by the presence of the Zn(2+) and Mg(2+) and substantiates the role of this residue as a metal ligand. In addition, Mg(2+) ligand binding site(s) indicated by the structural analysis were probed by site-directed mutagenesis of three key aspartate residues flanking the conserved C93 which were shown to have a functional impact on catalysis, cysteine activation, and metal (zinc) binding capacity. The unique amino acid sequence, the dynamic properties of the cysteine ligands involved in Zn(2+) coordination, and the requirement for a second metal (Mg(2+)) are discussed in the context of their roles in catalysis. The results are consistent with a Zn(2+)-mediated activation of H(2)O mechanism involving histidine as a general base that has features similar to but distinct from those of previously characterized purine and pyrimidine deaminases.  相似文献   

14.
In an effort to probe the structure of a group Bb metallo-beta-lactamase, Co(II)-substituted ImiS was prepared and characterized by electronic absorption, NMR, and EPR spectroscopies. ImiS containing 1 equiv of Co(II) (Co(II)(1)-ImiS) was shown to be catalytically active. Electronic absorption studies of Co(II)(1)-ImiS revealed the presence of two distinct features: (1) an intense sulfur to Co(II) ligand to metal charge transfer band and (2) less intense, Co(II) ligand field transitions that suggest 4-coordinate Co(II) in Co(II)(1)-ImiS. (1)H NMR studies of Co(II)(1)-ImiS suggest that one histidine, one aspartic acid, and one cysteine coordinate the metal ion in Co(II)(1)-ImiS. The addition of a second Co(II) to Co(II)(1)-ImiS did not result in any additional solvent-exchangeable NMR resonances, strongly suggesting that the second Co(II) does not bind to a site with histidine ligands. EPR studies reveal that the metal ion in Co(II)(1)-ImiS is 4-coordinate and that the second Co(II) is 5/6 coordinate. Taken together, these data indicate that the catalytic site in ImiS is the consensus Zn(2) site, in which Co(II) (and by extrapolation Zn(II)) is 4-coordinate and bound by Cys221, His263, Asp120, and probably one solvent water molecule. These studies also show that the second, inhibitory metal ion does not bind to the consensus Zn(1) site and that the metal ion binds at a site significantly removed from the active site. These results give the first structural information on metallo-beta-lactamase ImiS and suggest that the second metal binding site in ImiS may be targeted for inhibitors.  相似文献   

15.
Metal ion substrate inhibition of ferrochelatase   总被引:1,自引:0,他引:1  
Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. Robust kinetic analyses of the reaction mechanism are complicated by the instability of ferrous iron in aqueous solution, particularly at alkaline pH values. At pH 7.00 the half-life for spontaneous oxidation of ferrous ion is approximately 2 min in the absence of metal complexing additives, which is sufficient for direct comparisons of alternative metal ion substrates with iron. These analyses reveal that purified recombinant ferrochelatase from both murine and yeast sources inserts not only ferrous iron but also divalent cobalt, zinc, nickel, and copper into protoporphyrin IX to form the corresponding metalloporphyrins but with considerable mechanistic variability. Ferrous iron is the preferred metal ion substrate in terms of apparent k(cat) and is also the only metal ion substrate not subject to severe substrate inhibition. Substrate inhibition occurs in the order Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) and can be alleviated by the addition of metal complexing agents such as beta-mercaptoethanol or imidazole to the reaction buffer. These data indicate the presence of two catalytically significant metal ion binding sites that may coordinately regulate a selective processivity for the various potential metal ion substrates.  相似文献   

16.
Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structure of the Zn(II) sites in UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC) from Aquifex aeolicus and Pseudomonas aeruginosa. The active site Zn(II) is four coordinate, with exclusively low-Z (nitrogen and oxygen) ligation in both enzymes. The amplitude of the outer-shell scattering from the histidine ligands is best fit using two histidine ligands, suggesting a ZnO(2)(His)(2) site, where O most likely represents a conserved aspartate and a solvent molecule. The same structure was found for Co(II)-substituted A. aeolicus LpxC, although in this case it is possible that the coordination sphere may expand to include a fifth low-Z ligand. EXAFS data were also measured for the Escherichia coli LpxC enzyme. When a single Co(II) is substituted for Zn(II) in the active site of E. coli LpxC, EXAFS data show the same ligand environment as is found for the P. aeruginosa and A. aeolicus enzymes. However, the EXAFS data for E. coli LpxC with two zinc ions bound per protein, with the second Zn(II) acting as an inhibitory metal, demonstrates that the inhibitory metal is bound to at least two high-Z (sulfur, presumably thiolate, or chlorine) ligands. Results of the outer-shell scattering analysis, combined with previous studies of the LpxC enzyme, indicate a novel zinc binding motif not found in any previously studied zinc metalloproteins.  相似文献   

17.
The terminal enzyme of heme biosynthesis, ferrochelatase (EC 4.99.1.1), catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme. Prior to the present work, [2Fe-2S] clusters have been identified and characterized in animal ferrochelatases but not in plant or prokaryotic ferrochelatases. Herein we present evidence that ferrochelatases from the bacteria Caulobacter crescentus and Mycobacterium tuberculosis possess [2Fe-2S] clusters. The enzyme from C. crescentus is a homodimeric, membrane-associated protein while the enzyme from M. tuberculosis is monomeric and soluble. The clusters of the C. crescentus and M. tuberculosis ferrochelatases are ligated by four cysteines but possess ligand spacings that are unlike those of any previously characterized [2Fe-2S] cluster-containing protein, including the ferrochelatase of the yeast Schizosaccharomyces pombe. Thus, the microbial ferrochelatases represent a new group of [2Fe-2S] cluster-containing proteins.  相似文献   

18.
The "ribulose phosphate binding" superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common (beta/alpha)(8)-barrel ancestor. The superfamily includes d-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-l-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice [Jelakovic, S., Kopriva, S., Suss, K. H., and Schulz, G. E. (2003) J. Mol. Biol. 326, 127-35] and Plasmodium falciparum [Caruthers, J., Bosch, J., Bucker, F., Van Voorhis, W., Myler, P., Worthey, E., Mehlin, C., Boni, E., De Titta, G., Luft, J., Kalyuzhniy, O., Anderson, L., Zucker, F., Soltis, M., and Hol, W. G. J. (2006) Proteins 62, 338-42], the RPE from Streptococcus pyogenes is activated by Zn(2+) which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn(2+) and inactive apoenzyme cannot be prepared, the affinity for Zn(2+) is decreased by alanine substitutions for the two histidine residues that coordinate the Zn(2+) ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn(2+). The crystal structure of the RPE was solved at 1.8 A resolution in the presence of d-xylitol 5-phosphate, an inert analogue of the d-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn(2+) that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn(2+) and participate as acid/base catalysts are not conserved. We conclude that only the phosphate binding motif located at the ends of the seventh and eighth beta-strands of the (beta/alpha)(8)-barrel is functionally conserved among RPE, OMPDC, and KGPDC, consistent with the hypothesis that the members of the "ribulose phosphate binding" (beta/alpha)(8)-barrel "superfamily" as defined by SCOP have not evolved by evolutionary processes involving the intact (beta/alpha)(8)-barrel. Instead, this "superfamily" may result from assembly from smaller modules, including the conserved phosphate binding motif associated with the C-terminal (beta/alpha)(2)-quarter barrel.  相似文献   

19.
We heterologously overproduced a hyperthermostable archaeal low potential (E(m) = -62 mV) Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus strain P-1 and its variants in Escherichia coli to examine the influence of ligand substitutions on the properties of the [2Fe-2S] cluster. While two cysteine ligand residues (Cys(42) and Cys(61)) are essential for the cluster assembly and/or stability, the contributions of the two histidine ligands to the cluster assembly in the archaeal Rieske-type ferredoxin appear to be inequivalent as indicated by much higher stability of the His(64) --> Cys variant (H64C) than the His(44) --> Cys variant (H44C). The x-ray absorption and resonance Raman spectra of the H64C variant firmly established the formation of a novel, oxidized [2Fe-2S] cluster with one histidine and three cysteine ligands in the archaeal Rieske-type protein moiety. Comparative resonance Raman features of the wild-type, natural abundance and uniformly (15)N-labeled ARF and its H64C variant showed significant mixing of the Fe-S and Fe-N stretching characters for an oxidized biological [2Fe-2S] cluster with partial histidine ligation.  相似文献   

20.
Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. The severe metal ion substrate inhibition observed during in vitro studies of the purified enzyme is almost completely eliminated by mutation of an active site histidine residue (His-287, murine ferrochelatase numbering) to leucine and reduced over 2 orders of magnitude by mutation of a nearby conserved phenylalanine residue (Phe-283) to leucine. Elimination of substrate inhibition had no effect on the apparent V(max) for Ni(2+), but the apparent K(m) was increased 100-fold, indicating that the integrity of the inhibitory binding site is important for the enzyme to turn over substrates rapidly at low micromolar metal ion concentrations. The inhibitory site was observed to have a pK(a) value of 8.0, and this value was reduced to 7.5 by the F283L mutation and to 7.4 in a naturally occurring positional variant observed in most bacterial ferrochelatases, murine ferrochelatase H287C. A H287N variant was also found to be substrate-inhibited, but unlike the H287C variant, pH dependence of substrate inhibition was largely eliminated. The data indicate that the inhibitory metal ion-binding site is composed of multiple residues but primarily defined by His-287 and Phe-283 and is crucial for optimal activity at low metal ion concentrations. It is proposed that this binding site may be important for ferrous iron acquisition and desolvation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号