首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca(2+) pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca(2+) oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis.  相似文献   

2.
3.
The importance of renal and hepatic gluconeogenesis in glucose homeostasis is well established, but the cellular localization of the key gluconeogenic enzymes liver fructose-1,6-bisphosphatase (FBPase) and cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in these organs and the potential contribution of other tissues in this process has not been investigated in detail. Therefore, we analyzed the human tissue localization and cellular distribution of FBPase and PEPCK immunohistochemically. The localization analysis demonstrated that FBPase was expressed in many tissues that had not been previously reported to contain FBPase activity (e.g., prostate, ovary, suprarenal cortex, stomach, and heart). In some multicellular tissues, this enzyme was detected in specialized areas such as epithelial cells of the small intestine and prostate or lung pneumocytes II. Interestingly, FBPase was also present in pancreas and cortex cells of the adrenal gland, organs that are involved in the control of carbohydrate and lipid metabolism. Although similar results were obtained for PEPCK localization, different expression of this enzyme was observed in pancreas, adrenal gland, and pneumocytes type I. These results show that co-expression of FBPase and PEPCK occurs not only in kidney and liver, but also in a variety of organs such as the small intestine, stomach, adrenal gland, testis, and prostate which might also contribute to gluconeogenesis. Our results are consistent with published data on the expression of glucose-6-phosphatase in the human small intestine, providing evidence that this organ may play an important role in the human glucose homeostasis.  相似文献   

4.
The low affinity glucose-phosphorylating enzyme glucokinase shows the phenomenon of intracellular translocation in beta cells of the pancreas and the liver. To identify potential binding partners of glucokinase by a systematic strategy, human beta cell glucokinase was screened by a 12-mer random peptide library displayed by the M13 phage. This panning procedure revealed two consensus motifs with a high binding affinity for glucokinase. The first consensus motif, LSAXXVAG, corresponded to the glucokinase regulatory protein of the liver. The second consensus motif, SLKVWT, showed a complete homology to the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which acts as a key regulator of glucose metabolism. Through yeast two-hybrid analysis it became evident that the binding of glucokinase to PFK-2/FBPase-2 is conferred by the bisphosphatase domain, whereas the kinase domain is responsible for dimerization. 5'-Rapid amplification of cDNA ends analysis and Northern blot analysis revealed that rat pancreatic islets express the brain isoform of PFK-2/FBPase-2. A minor portion of the islet PFK-2/FBPase-2 cDNA clones comprised a novel splice variant with 8 additional amino acids in the kinase domain. The binding of the islet/brain PFK-2/ FBPase-2 isoform to glucokinase was comparable with that of the liver isoform. The interaction between glucokinase and PFK-2/FBPase-2 may provide the rationale for recent observations of a fructose-2,6-bisphosphate level-dependent partial channeling of glycolytic intermediates between glucokinase and glycolytic enzymes. In pancreatic beta cells this interaction may have a regulatory function for the metabolic stimulus-secretion coupling. Changes in fructose-2,6-bisphosphate levels and modulation of PFK-2/FBPase-2 activities may participate in the physiological regulation of glucokinase-mediated glucose-induced insulin secretion.  相似文献   

5.
Botha AM  Botha FC 《Plant physiology》1993,101(4):1385-1390
During germination of Citrullus lanatus, pyrophosphate-dependent phosphofructokinase (PFP) activity is induced. The peak of PFP activity coincides with the maximum gluconeogenic flux and high fructose-2,6-bisphosphate (Fru-2,6-P2) concentrations. Determination of cytosolic fructose-1,6 bisphosphatase (FBPase) activity in crude extracts is unreliable because of the high PFP activity. The FBPase activity, after correction for the contaminating PFP, is only one-third of the PFP activity. Purified cytosolic FBPase is inhibited by Fru-2,6-P2. The low cytosolic FBPase activity and high Fru-2,6-P2 most probably result in inadequate in vivo activity to catalyze the observed gluconeogenic flux. The total PFP activity is sufficient to catalyze the required carbon flux.  相似文献   

6.
To shed some light on gluconeogenesis in mammalian retina, we have focused on fructose-1,6-bisphosphatase (FBPase), a regulatory enzyme of the process. The abundance of the enzyme within the layers of the rat retina suggests that, in mammals in contrast to amphibia, gluconeogenesis is not restricted to one specific cell of the retina. We propose that FBPase, in addition to its gluconeogenic role, participates in the protection of the retina against reactive oxygen species. Additionally, the nuclear localization of FBPase and of its binding partner, aldolase, in the retinal cells expressing the proliferation marker Ki-67 indicates that these two gluconeogenic enzymes are involved in non-enzymatic nuclear processes.  相似文献   

7.
A rise in the extracellular concentration of glucose from zero to 5.6 and 16.7 mM caused a graded increase in the glucose-1,6-bisphosphate content of rat pancreatic islets. Glucose-1,6-bisphosphate activated phosphofructokinase in islet homogenates, when the reaction velocity was measured at low concentrations of fructose-6-phosphate. It is postulated that glucose-1, 6-bisphosphate participates, together with fructose-2,6-bisphosphate, in the regulation of glycolysis in intact islet cells.  相似文献   

8.
Hypertrehalosemic neuropeptides from the corpora cardiaca such as the decapeptide Bld HrTH bring about a profound switch in the metabolic activity of cockroach fat body during which production of the blood sugar trehalose is stimulated while the catabolism of carbohydrate (glycolysis) is inhibited. The mechanisms of the metabolic switch are not fully understood.Incubation of isolated fat body from the cockroach Blaptica dubia with 10(-8) M Bld HrTH, for 10-60 min, stimulated glycogen breakdown and increased the content of the substrates of both the glycolytic enzyme 6-phosphofructo-1-kinase (PFK, EC 2.7.1.11) and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) in the tissue. The glycolytic signal fructose 2,6-bisphosphate was markedly decreased in fat body on incubation with Bld HrTH. The content of ATP was slightly reduced, while the contents of ADP and AMP were increased after incubation with the hormone.Fructose 2,6-bisphosphate is a potent activator of PFK and a strong inhibitor of FBPase purified from fat body. The activity of PFK was decreased by about 90% when the hormone-dependent changes in effectors and substrates in fat body were simulated in vitro. FBPase, in contrast, was activated about 25-fold under these conditions, suggesting the hormone to stimulate gluconeogenesis in fat body. The data support the view that fructose 2,6-bisphosphate is a pivotal intracellular messenger in the hormone-induced metabolic switch from carbohydrate degradation to trehalose production in cockroach fat body.  相似文献   

9.
The mode of synthesis and the regulation of fructose-1,6-bisphosphatase (Fbpase), a gluconeogenic enzyme, and phosphofructokinase (PFK), a glycolytic enzyme, were investigated in Saccharomyces cerevisiae after growth in the presence of different concentrations of glucose or various gluconeogenic carbon sources. The activity of FBPase appeared in the cells after the complete disappearance of glucose from the growth medium with a concomitant increase of the pH and no significant change in the levels of accumulated ethanol. The appearance of FBPase activity following glucose depletion was dependent upon the synthesis of protein. The FBPase PFK were present in glucose-, ethanol-, glycerol-, lactate-, or pyruvate-grown cells; however, the time of appearance and the levels of both these enzymes varied. The FBPase activity was always higher in 1% glucose-grown cells than in cells grown in the presence of gluconeogenic carbon sources. Phosphoglucose isomerase activity did not vary significantly. Addition of glucose to an FBPase and PFK synthesizing culture resulted in a complete loss, followed by a reappearance, of PFK activity. In the presence of cycloheximide the disappearance of glucose and the changes in the levels of FBPase and PFK were decreased significantly. It is concluded that S. cerevisiae exhibits a more efficient synthesis of FBPase after the exhaustion of glucose compared to the activity present in cells grown in the presence of exogenous gluconeogenic carbon sources. Two metabolically antagonistic enzymes, FBPase and PFK, are present during the transition phase, but not during the exponential phase, of growth, and the decay or inactivation of these enzymes in vivo may be dependent upon a glucose-induced protease activity.  相似文献   

10.
When fasted rats ate regular lab chow there was a lag time of about 2 h before the concentration of fructose 2,6-bisphosphate (Fru-2,6-P2) in liver began to rise from its low basal level. By contrast, in animals refed on a sucrose-based diet hepatic [Fru-2,6-P2] increased 20-fold (to a value of approximately 12 nmol/g wet weight) during the first hour. These responses correlated with differences in the ability of the two diets to increase the circulating [insulin]/[glucagon] ratio and thus to elevate the ratio of 6-phosphofructo-2-kinase to fructose-2, 6-bisphosphatase. Liver glycogen was deposited briskly in both groups of rats. To assess its mechanism of synthesis (directly from glucose versus indirectly via the gluconeogenic pathway), animals eating the chow or sucrose diets received intravenous infusions of [14C]bicarbonate, [1-14C] fructose, and 3H2O. After isolation, the glycogen was subjected to positional isotopic analysis of its glucose residues. The results established that regardless of the diet the bulk of liver glycogen was gluconeogenic in origin. The fact that with sucrose feeding carbon flow through hepatic fructose-1,6-bisphosphatase remained active despite high levels of Fru-2,6-P2 (a potent inhibitor of this enzyme in vitro) presents a metabolic paradox. Conceivably, the suppressive effect of Fru-2, 6-P2 on hepatic fructose-1,6-bisphosphatase is overridden in vivo by some unknown factor or factors generated in response to sucrose feeding. Alternatively, metabolic zonation in liver might result in the coexistence of hepatocytes rich in Fru-2,6-P2 (high glycolytic, low gluconeogenic, low glycogenic capacitites) with cells depleted of Fru-2,6-P2 (low glycolytic, high gluconeogenic, high glycogenic capacities).  相似文献   

11.
12.
A substrate cycle composed of phosphofructo 1-kinase I (PFK) and fructose 1,6 bisphosphatase I (FBPase) has been proposed in rat spermatids. This substrate cycle can explain the ability of glucose to induce a decrease in intracellular ATP, a phenomenon that was related to regulation of [Ca(2+)]i in these cells. In spite of the importance of this metabolic cycle, the expression and activities of the enzymes that compose such cycle have not been systematically studied in spermatogenic cells. Here, we show that PFK and FBPase activities were present in pachytene spermatocytes and round spermatids extracts. Expression of PFK at the mRNA and protein levels showed a relatively similar expression in spermatogenic cells, but a stronger expression in Sertoli cells. Instead, expression of FBPase at the mRNA and protein levels was stronger in round and elongating spermatids as compared to other spermatogenic cells. A similar pattern was observed when evidencing FBPase activity by a NADPH-nitroblue tetrazolium-linked cytochemical assay in isolated pachytene spermatocytes and round spermatids. Rat spermatids also showed the ability to convert lactate to fructose- and glucose-6-P, indicating that both glycolytic and gluconeogenic fluxes are present in these cells. Our results indicate that a coordinated expression of key substrate cycle enzymes, at the level of PFK/FBPase, appear in the last stages of spermatogenic cell differentiation, suggesting that the co-regulation of these enzymes are required for the ability of these cells to respond to glucose and induce metabolic and Ca(2+) signals that can be important for sperm development and function.  相似文献   

13.
GPR40 gene expression in human pancreas and insulinoma   总被引:3,自引:0,他引:3  
To assess gene expression of a membrane-bound G-protein-coupled fatty acid receptor, GPR40, in the human pancreas and islet cell tumors obtained at surgery were analyzed. The mRNA level of the GPR40 gene in isolated pancreatic islets was approximately 20-fold higher than that in the pancreas, and the level was comparable to or rather higher than that of the sulfonylurea receptor 1 gene, which is known to be expressed abundantly in human pancreatic beta cells. A large amount of GPR40 mRNA was detected in tissue extracts from two cases of insulinoma, whereas the expression was undetectable in glucagonoma or gastrinoma. The present study demonstrates that GPR40 mRNA is expressed predominantly in pancreatic islets in humans and that GPR40 mRNA is expressed solely in human insulinoma among islet cell tumors. These results indicate that GPR40 is probably expressed in pancreatic beta cells in the human pancreas.  相似文献   

14.
15.
OBJECTIVES: Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), was recently identified in the stomach. Ghrelin is produced in a population of endocrine cells in the gastric mucosa, but expression in intestine, hypothalamus and testis has also been reported. Recent data indicate that ghrelin affects insulin secretion and plays a direct role in metabolic regulation and energy balance. On the basis of these findings, we decided to examine whether ghrelin is expressed in human pancreas. Specimens from fetal to adult human pancreas and stomach were studied by immunocytochemistry, for ghrelin and islet hormones, and in situ hybridisation, for ghrelin mRNA. RESULTS: We identified ghrelin expression in a separate population of islet cells in human fetal, neonatal, and adult pancreas. Pancreatic ghrelin cells were numerous from midgestation to early postnatally (10% of all endocrine cells). The cells were few, but regularly seen in adults as single cells at the islet periphery, in exocrine tissue, in ducts, and in pancreatic ganglia. Ghrelin cells did not express any of the known islet hormones. In fetuses, at midgestation, ghrelin cells in the pancreas clearly outnumbered those in the stomach. CONCLUSIONS: Ghrelin is expressed in a quite prominent endocrine cell population in human fetal pancreas, and ghrelin expression in the pancreas precedes by far that in the stomach. Pancreatic ghrelin cells remain in adult islets at lower numbers. Ghrelin is not co-expressed with any known islet hormone, and the ghrelin cells may therefore constitute a new islet cell type.  相似文献   

16.
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is subjected to catabolite inactivation and degradation when glucose-starved cells are replenished with fresh glucose. In various studies, the proteasome and the vacuole have each been reported to be the major site of FBPase degradation. Because different growth conditions were used in these studies, we examined whether variations in growth conditions could alter the site of FBPase degradation. Here, we demonstrated that FBPase was degraded outside the vacuole (most likely in the proteasome), when glucose was added to cells that were grown in low glucose media for a short period of time. By contrast, cells that were grown in the same low glucose media for longer periods of time degraded FBPase in the vacuole in response to glucose. Another gluconeogenic enzyme malate dehydrogenase (MDH2) showed the same degradation characteristics as FBPase in that the short term starvation of cells led to a non-vacuolar degradation, whereas long term starvation resulted in the vacuolar degradation of this protein. The N-terminal proline is required for the degradation of FBPase and MDH2 for both the vacuolar and non-vacuolar proteolytic pathways. The cAMP signaling pathway and the phosphorylation of glucose were needed for the vacuolar-dependent degradation of FBPase and MDH2. By contrast, the cAMP-dependent signaling pathway was not involved in the non-vacuolar degradation of these proteins, although the phosphorylation of glucose was required.  相似文献   

17.
The presence of FMRF-amide, a cardioactive tetrapeptide, was studied by immunocytochemistry in human and rat gastric antrum and pancreas, and in the ovine, bovine, canine and rabbit pancreas. In human and rat gastric antrum, numerous cells contained FMRF-amide immunoreactive material. By staining of serial sections and by double staining, colocalization of immunoreactivity for gastrin and FMRF-amide was observed in part of the gastrin cells. In the pancreas of these and the other species, immunoreactivity for FMRF-amide was located both in acinar and islet endocrine cells. Colocalization of FMRF-amide and pancreatic polypeptide was found in a proportion of pancreatic polypeptide cells in the pancreas. FMRF-amide immunoreactivity never colocalized with the other neurohormonal peptides which occur in the gastric antrum and the pancreas. Our observations show that neuroendocrine cells occur in the gastric antrum and pancreas which are exclusively immunoreactive or gastrin and for pancreatic polypeptide respectively. In addition cells occur which show immunoreactivity for FMRF-amide as well as for gastrin in the gastric antrum and with antiserum to FMRF-amide as well as for pancreatic polypeptide in the pancreas. It is concluded that FMRF-amide antibodies probably recognize a substance in G and PP cells which is not identical but may be structurally related to gastrin and pancreatic polypeptide.  相似文献   

18.
Human fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) is a key gluconeogenic enzyme, responsible for the hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate, and thus presents an opportunity for the development of novel therapeutics focused on lowering the hepatic glucose production in type 2 diabetics. In its active form FBPase exists as a homotetramer and is allosterically regulated by AMP. In an HTS campaign aromatic sulfonylureas have been identified as FBPase inhibitors mimicking AMP. By bridging two adjacent allosteric binding sites using two aromatic sulfonylureas as anchor units and covalently linking them, it was possible to obtain dual binding AMP site inhibitors that exhibit a strong inhibitory effect.  相似文献   

19.
Ghrelin is produced mainly by endocrine cells in the stomach and is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). It also influences feeding behavior, metabolic regulation, and energy balance. It affects islet hormone secretion, and expression of ghrelin and GHS-R in the pancreas has been reported. In human islets, ghrelin expression is highest pre- and neonatally. We examined ghrelin and GHS-R in rat islets during development with immunocytochemistry and in situ hybridization. We also studied the effect of ghrelin on insulin secretion from INS-1 (832/13) cells and the expression of GHS-R in these cells. We found ghrelin expression in rat islet endocrine cells from mid-gestation to 1 month postnatally. Islet expression of GHS-R mRNA was detected from late fetal stages to adult. The onset of islet ghrelin expression preceded that of gastric ghrelin. Islet ghrelin cells constitute a separate and novel islet cell population throughout development. However, during a short perinatal period a minor subpopulation of the ghrelin cells co-expressed glucagon or pancreatic polypeptide. Markers for cell lineage, proliferation, and duct cells revealed that the ghrelin cells proliferate, originate from duct cells, and share lineage with glucagon cells. Ghrelin dose-dependently inhibited glucose-stimulated insulin secretion from INS-1 (832/13) cells, and GHS-R was detected in the cells. We conclude that ghrelin is expressed in a novel developmentally regulated endocrine islet cell type in the rat pancreas and that ghrelin inhibits glucose-stimulated insulin secretion via a direct effect on the beta-cell.  相似文献   

20.
Recently, a putative hormone, glucagon-like peptide I (GLP I), has been identified in the predicted sequences of the precursors to pancreatic glucagon in human, rat, hamster, and ox. The distribution of GLP I immunoreactivity in canine and feline pancreas and gastrointestinal tract was examined immunohistochemically and was compared with that of two other antigenic determinants of pancreatic pro-glucagon, i.e., glucagon and the NH2 terminus of glicentin. All three determinants occurred in the same population of islet cells in normal pancreas and in pancreas consisting predominantly of islet tissue from dogs with canine pancreatic acinar atrophy. Northern blot analysis of mRNA from the latter tissue, using a rat pre-pro-glucagon complementary DNA probe, revealed a single mRNA species similar in size to the pre-pro-glucagon mRNA detected in fetal rat pancreas. The three antigenic determinants of pancreatic pro-glucagon were co-localized also in intestinal L-cells and in canine gastric A-cells. Canine and feline pancreatic pro-glucagons therefore resemble those identified in other mammals and may also occur in gastrointestinal endocrine cells. Although there is evidence that the GLP I sequence is not liberated from pancreatic pro-glucagon, our results raise the possibility that this putative hormone may be a cleavage product of pro-glucagon in the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号