首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel coronavirus disease 2019 (COVID-19) is associated with a hypercoagulable state, characterized by abnormal coagulation parameters and by increased incidence of cardiovascular complications. With this study, we aimed to investigate the activation state and the expression of transmembrane proteins in platelets of hospitalized COVID-19 patients. We investigated transmembrane proteins expression with a customized mass cytometry panel of 21 antibodies. Platelets of 8 hospitalized COVID-19 patients not requiring intensive care support and without pre-existing conditions were compared to platelets of healthy controls (11 donors) with and without in vitro stimulation with thrombin receptor-activating peptide (TRAP). Mass cytometry of non-stimulated platelets detected an increased surface expression of activation markers P-Selectin (0.67 vs. 1.87 median signal intensity for controls vs. patients, p = 0.0015) and LAMP-3 (CD63, 0.37 vs. 0.81, p = 0.0004), the GPIIb/IIIa complex (4.58 vs. 5.03, p < 0.0001) and other adhesion molecules involved in platelet activation and platelet–leukocyte interactions. Upon TRAP stimulation, mass cytometry detected a higher expression of P-selectin in COVID-19 samples compared to controls (p < 0.0001). However, we observed a significantly reduced capacity of COVID-19 platelets to increase the expression of activation markers LAMP-3 and P-Selectin upon stimulation with TRAP. We detected a hyperactivated phenotype in platelets during SARS-CoV-2 infection, consisting of highly expressed platelet activation markers, which might contribute to the hypercoagulopathy observed in COVID-19. In addition, several transmembrane proteins were more highly expressed compared to healthy controls. These findings support research projects investigating antithrombotic and antiplatelet treatment regimes in COVID-19 patients, and provide new insights on the phenotypical platelet expression during SARS-CoV-2 infection.Subject terms: Mechanisms of disease, Viral infection  相似文献   

2.
3.
4.
5.
Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARSCoV-2),a novel coronavirus that causes Coronavirus Disease 2019(COVID-19)(Yang and Wang,2020),has spread to more than 200 countries and infected more than 9,000,000 people as of Jun 2020.Tens of thousands of patients with COVID-19 have recovered and been discharged from hospital.However,there are reports of recovered patients who subsequently tested positive for SARSCoV-2 after discharge(re-detectable positive,RP)(An et al.,2020;Lan et al.,2020),and this has led to increasing focus on the mechanism(s)underlying RP.  相似文献   

6.
Background:Risk factors for severe outcomes of SARS-CoV-2 infection are not well established in children. We sought to describe pediatric hospital admissions associated with SARS-CoV-2 infection in Canada and identify risk factors for more severe disease.Methods:We conducted a national prospective study using the infrastructure of the Canadian Paediatric Surveillance Program (CPSP). Cases involving children who were admitted to hospital with microbiologically confirmed SARS-CoV-2 infection were reported from Apr. 8 to Dec. 31 2020, through weekly online questionnaires distributed to the CPSP network of more than 2800 pediatricians. We categorized hospital admissions as related to COVID-19, incidental, or for social or infection control reasons and determined risk factors for disease severity in hospital.Results:Among 264 hospital admissions involving children with SARS-CoV-2 infection during the 9-month study period, 150 (56.8%) admissions were related to COVID-19 and 100 (37.9%) were incidental infections (admissions for other reasons and found to be positive for SARS-CoV-2 on screening). Infants (37.3%) and adolescents (29.6%) represented most cases. Among hospital admissions related to COVID-19, 52 (34.7%) had critical disease, 42 (28.0%) of whom required any form of respiratory or hemodynamic support, and 59 (39.3%) had at least 1 underlying comorbidity. Children with obesity, chronic neurologic conditions or chronic lung disease other than asthma were more likely to have severe or critical COVID-19.Interpretation:Among children who were admitted to hospital with SARS-CoV-2 infection in Canada during the early COVID-19 pandemic period, incidental SARS-CoV-2 infection was common. In children admitted with acute COVID-19, obesity and neurologic and respiratory comorbidities were associated with more severe disease.

As of Dec. 31, 2020, Canada had 581 427 confirmed cases of SARS-CoV-2 infection.1 Similar to other countries, most confirmed infections were in adults, in part because of initial testing policies that targeted older and at-risk populations, as well as prolonged societal containment measures to minimize children’s risk of exposure. Although fewer SARS-CoV-2 infections in children were reported relative to adults during Canada’s first waves of the pandemic,2 recent surges in pediatric cases across North America have challenged the notion that children are infected at a lower frequency than adults.3,4 However, the severity of infection in children appears to be substantially lower, with fewer overall hospital admissions reported and substantially lower mortality compared with adults.5,6Although risk factors for more severe outcomes of COVID-19 have been well described in adults,7 similar risks are less well described in children.8 Experience with other viral respiratory infections, including influenza and respiratory syncytial virus, has shown that patient-level factors can increase risk for severe disease in children.9,10 Understanding populations at risk for severe disease is essential for developing evidence-informed testing strategies, recommendations around reducing exposure (including guidance informing in-person schooling) and potential prioritization of SARS-CoV-2 vaccines in children.To date, few published data have characterized admissions to hospital with SARS-CoV-2 infection among children in Canada. We sought to describe pediatric hospital admissions associated with acute SARS-CoV-2 infection in Canada and identify risk factors for severe disease among children admitted to hospital.  相似文献   

7.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the zoonotic pathogen that causes the “Coronavirus Disease of 2019 (COVID-19)”, and COVID-19 itself is yet to be thoroughly understood. Both the disease as well as the mechanisms by which the host interacts with the SARS-CoV-2 have not been fully enlightened. The epidemiological factors –e.g. age, sex, race-, the polymorphisms of the host proteins, the blood types and individual differences have all been in discussions about affecting the progression and the course of COVID-19 both individually and collectively, as their effects are mostly interwoven. We focused mainly on the effect of polymorphic variants of the host proteins that have been shown to take part in and/or affect the pathogenesis of COVID-19. Additionally, how the procedures of diagnosing and treating COVID-19 are affected by these variants and what possible changes can be implemented are the other questions, which are sought to be answered.  相似文献   

8.
《CMAJ》2022,194(14):E513
Background:SARS-CoV-2 infection can lead to multisystem inflammatory syndrome in children (MIS-C). We sought to investigate risk factors for admission to the intensive care unit (ICU) and explored changes in disease severity over time.Methods:We obtained data from chart reviews of children younger than 18 years with confirmed or probable MIS-C who were admitted to 15 hospitals in Canada, Iran and Costa Rica between Mar. 1, 2020, and Mar. 7, 2021. Using multivariable analyses, we evaluated whether admission date and other characteristics were associated with ICU admission or cardiac involvement.Results:Of 232 children with MIS-C (median age 5.8 yr), 130 (56.0%) were male and 50 (21.6%) had comorbidities. Seventy-three (31.5%) patients were admitted to the ICU but none died. We observed an increased risk of ICU admission among children aged 13–17 years (adjusted risk difference 27.7%, 95% confidence interval [CI] 8.3% to 47.2%), those aged 6–12 years (adjusted risk difference 25.2%, 95% CI 13.6% to 36.9%) or those with initial ferritin levels greater than 500 μg/L (adjusted risk difference 18.4%, 95% CI 5.6% to 31.3%). Children admitted to hospital after Oct. 31, 2020, had numerically higher rates of ICU admission (adjusted risk difference 12.3%, 95% CI −0.3% to 25.0%) and significantly higher rates of cardiac involvement (adjusted risk difference 30.9%, 95% CI 17.3% to 44.4%). At Canadian sites, the risk of ICU admission was significantly higher for children admitted to hospital between December 2020 and March 2021 than those admitted between March and May 2020 (adjusted risk difference 25.3%, 95% CI 6.5% to 44.0%).Interpretation:We observed that age and higher ferritin levels were associated with more severe MIS-C. We observed greater severity of MIS-C later in the study period. Whether emerging SARS-CoV-2 variants pose different risks of severe MIS-C needs to be determined.

Multisystem inflammatory syndrome in children (MIS-C)1 manifests as immune dysregulation after SARS-CoV-2 infection.2 The syndrome has no pathognomonic features. Thus, the diagnostic criteria of the Royal College of Paediatrics and Child Health (RCPCH), the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) differ, but they all include fever, evidence of systemic inflammation and involvement of at least 1 organ or system.3Our primary objective was to assess initial clinical or laboratory features that predict severe illness in MIS-C. We also sought to explore changes in overall disease severity and cardiac involvement over time as it was the impression of many investigators that severity of MIS-C increased through pandemic waves.  相似文献   

9.
10.
11.
12.
Recent biochemical, biophysical, and genetic studies have shown that heparan sulfate, a major component of the cellular glycocalyx, participates in infection of SARS-CoV-2 by facilitating the so-called open conformation of the spike protein, which is required for binding to ACE2. This review highlights the involvement of heparan sulfate in the SARS-CoV-2 infection cycle and argues that there is a high degree of coordination between host cell heparan sulfate and asparagine-linked glycans on the spike in enabling ACE2 binding and subsequent infection. The discovery that spike protein binding and infection depends on both viral and host glycans provides insights into the evolution, spread and potential therapies for SARS-CoV-2 and its variants.  相似文献   

13.
14.
Secretory phospholipase 2 (sPLA2) acts as a mediator between proximal and distal events of the inflammatory cascade. Its role in SARS-CoV-2 infection is unknown, but could contribute to COVID-19 inflammasome activation and cellular damage. We present the first report of plasma sPLA2 levels in adults and children with COVID-19 compared with controls. Currently asymptomatic adults with a history of recent COVID-19 infection (≥4 weeks before) identified by SARS-CoV-2 IgG antibodies had sPLA2 levels similar to those who were seronegative (9 ± 6 vs.17 ± 28 ng/mL, P = 0.26). In contrast, children hospitalized with severe COVID-19 had significantly elevated sPLA2 compared with those with mild or asymptomatic SARS-CoV-2 infection (269 ± 137 vs. 2 ± 3 ng/mL, P = 0.01). Among children hospitalized with multisystem inflammatory syndrome in children (MIS-C), all had severe disease requiring pediatric intensive care unit (PICU) admission. sPLA2 levels were significantly higher in those with acute illness <10 days versus convalescent disease ≥10 days (540 ± 510 vs. 2 ± 1, P = 0.04). Thus, sPLA2 levels correlated with COVID-19 severity and acute MIS-C in children, implicating a role in inflammasome activation and disease pathogenesis. sPLA2 may be a useful biomarker to stratify risk and guide patient management for children with acute COVID-19 and MIS-C. Therapeutic compounds targeting sPLA2 and inflammasome activation warrant consideration.  相似文献   

15.
16.
At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.  相似文献   

17.
The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.

In February of 2020, the World Health Organization (WHO) R&D Blueprint convened a group of experts to develop preclinical models of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Since its inception, the goal of this WHO COVID Modeling group (WHO-COM) has been to accelerate the development of Coronavirus Disease 2019 (COVID-19) vaccines and therapeutics by rapidly sharing data among member scientists worldwide. In addition, concerns were raised at that time about the possibility of vaccine-associated enhanced respiratory disease (VAERD) or antibody-dependent enhancement (ADE) after vaccination or infection. In September of 2020, the WHO-COM published a review on COVID-19 animal models [1], which reflected the state-of-the art at that time, with the vast majority of publications authored by members of the group.Preclinical studies in nonhuman primates (NHPs) of COVID-19 vaccines that are currently being deployed [25] proved remarkably predictive of the outcome of clinical efficacy studies. In particular, NHP studies not only predicted high clinical efficacy of these vaccines but also suggested immune correlates of protection. Moreover, preclinical studies accurately predicted that protection against severe pneumonia would be easier to achieve than protection against viral replication in nasal mucosa. These observations confirm the value and importance of the use of animal models for COVID-19.In 2021, with several vaccines rolling out worldwide and the detection of variants of concern (VOCs), the development of preclinical models of SARS-CoV-2 infection and their role in COVID-19 research has entered into a new phase. This paper provides an update from the WHO-COM regarding advances in preclinical models. In particular, we discuss how animal model research has provided insight into VOC pathogenesis and correlates of protection and has helped therapeutic development. Finally, we discuss the current status of VAERD research and the race to develop models that recapitulate COVID-19 demographic variables such as comorbidities and age.  相似文献   

18.
19.
Patients with coronavirus disease 2019 (COVID-19) often exhibit diverse disease progressions associated with various infectious ability, symptoms, and clinical treatments. To systematically and thoroughly understand the heterogeneous progression of COVID-19, we developed a multi-scale computational model to quantitatively understand the heterogeneous progression of COVID-19 patients infected with severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). The model consists of intracellular viral dynamics, multicellular infection process, and immune responses, and was formulated using a combination of differential equations and stochastic modeling. By integrating multi-source clinical data with model analysis, we quantified individual heterogeneity using two indexes, i.e., the ratio of infected cells and incubation period. Specifically, our simulations revealed that increasing the host antiviral state or virus induced type I interferon (IFN) production rate can prolong the incubation period and postpone the transition from asymptomatic to symptomatic outcomes. We further identified the threshold dynamics of T cell exhaustion in the transition between mild-moderate and severe symptoms, and that patients with severe symptoms exhibited a lack of naïve T cells at a late stage. In addition, we quantified the efficacy of treating COVID-19 patients and investigated the effects of various therapeutic strategies. Simulations results suggested that single antiviral therapy is sufficient for moderate patients, while combination therapies and prevention of T cell exhaustion are needed for severe patients. These results highlight the critical roles of IFN and T cell responses in regulating the stage transition during COVID-19 progression. Our study reveals a quantitative relationship underpinning the heterogeneity of transition stage during COVID-19 progression and can provide a potential guidance for personalized therapy in COVID-19 patients.  相似文献   

20.
During the current formidable COVID-19 pandemic, it is appealing to address ideas that may invoke therapeutic interventions. Clotting disorders are well recognized in patients infected with severe acute respiratory syndrome (SARS) caused by a novel coronavirus (SARS-CoV-2), which lead to severe complications that worsen the prognosis in these subjects.Increasing evidence implicate Heparan sulfate proteoglycans (HSPGs) and Heparanase in various diseases and pathologies, including hypercoagulability states. Moreover, HSPGs and Heparanase are involved in several viral infections, in which they enhance cell entry and release of the viruses.Herein we discuss the molecular involvement of HSPGs and heparanase in SARS-CoV-2 infection, namely cell entry and release, and the accompanied coagulopathy complications, which assumedly could be blocked by heparanase inhibitors such as Heparin and Pixatimod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号