首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.

Background

Programmed death ligand-1 (PD-L1) has been identified as a factor associated with poor prognosis in a range of cancers, and was reported to be mainly induced by PTEN loss in gliomas. However, the clinical effect of PD-L1 and its regulation by PTEN has not yet been determined in colorectal cancer (CRC). In the present study, we verified the regulation of PTEN on PD-L1 and further determined the effect of PTEN on the correlation between PD-L1 expression and clinical parameters in CRC.

Methods/Results

RNA interference approach was used to down-regulate PTEN expression in SW480, SW620 and HCT116 cells. It was showed that PD-L1 protein, but not mRNA, was significantly increased in cells transfected with siRNA PTEN compared with the negative control. Moreover, the capacity of PTEN to regulate PD-L1 expression was not obviously affected by IFN-γ, the main inducer of PD-L1. Tissue microarray immunohistochemistry was used to detect PD-L1 and PTEN in 404 CRC patient samples. Overexpression of PD-L1 was significantly correlated with distant metastasis (P<0.001), TNM stage (P<0.01), metastatic progression (P<0.01) and PTEN expression (P<0.001). Univariate analysis revealed that patients with high PD-L1 expression had a poor overall survival (P<0.001). However, multivariate analysis did not support PD-L1 as an independent prognostic factor (P = 0.548). Univariate (P<0.001) and multivariate survival (P<0.001) analysis of 310 located CRC patients revealed that high level of PD-L1 expression was associated with increased risks of metastatic progression. Furthermore, the clinical effect of PD-L1 on CRC was not statistically significant in a subset of 39 patients with no PTEN expression (distant metastasis: P = 0.102; TNM stage: P = 0.634, overall survival: P = 0.482).

Conclusions

PD-L1 can be used to identify CRC patients with high risk of metastasis and poor prognosis. This clinical manifestation may be partly associated with PTEN expression.  相似文献   

2.
3.
Colorectal cancer (CRC) is still considered as the third most frequent cancer in the world. Microsatellite instability (MSI), inflammation, and microRNAs have been demonstrated as the main contributing factors in CRC. Subtype 1 CRC is defined by NK cells infiltration, induction of Th1 lymphocyte and cytotoxic T cell responses as well as upregulation of immune checkpoint proteins including programmed cell death-1 (PD-1). Based on the diverse features of CRC, such as the stage and localization of the tumor, several treatment approaches are available. However, the efficiency of these treatments may be decreased due to the development of diverse resistance mechanisms. It has been proven that monoclonal antibodies (mAbs) can increase the effectiveness of CRC treatments. Nowadays, several mAbs including nivolumab and pembrolizumab have been approved for the treatment of CRC. Immune checkpoint receptors including PD-1 can be inhibited by these antibodies. Combination therapy gives an opportunity for advanced treatment for CRC patients. In this review, an update has been provided on the molecular mechanisms involved in MSI colorectal cancer immune microenvironment by focusing on PD-ligand 1 (PD-L1) and treatment of patients with advanced immunotherapy, which were examined in the different clinical trial phases. Considering induced expression of PD-L1 by conventional chemotherapeutics, we have summarized the role of PD-L1 in CRC, the chemotherapy effects on the PD-1/PD-L1 axis and novel combined approaches to enhance immunotherapy of CRC by focusing on PD-L1.  相似文献   

4.
The expression of programmed death ligand-1 (PD-L1) in tumor has been used as a biomarker to predict the anti-PD-L1 immunotherapy response. To develop a noninvasive imaging technique to monitor the dynamic changes in PD-L1 expression in colorectal cancer (CRC), we labeled an anti-PD-L1 monoclonal antibody with near-infrared (NIR) dye and tested the ability of the NIR-PD-L1-mAb probe to monitor the PD-L1 expression in CRC-xenografted mice by performing optical imaging. Consistent with the expression levels of PD-L1 protein in three CRC cell lines in vitro by flow cytometry and Western blot analyses, our in vivo imaging showed the highest fluorescence signal of the xenografted tumors in mice bearing SW620 CRC cells, followed by tumors derived from SW480 and HCT8 cell lines. We detected the highest fluorescent intensity of the tumor at 120 hours after injection of NIR-PD-L1-mAb. The highest fluorescence intensity was seen in the tumor, followed by the spleen and the liver in SW620 xenografted mice. In SW480 and HCT8 xenografted mice, however, the highest fluorescent signals were detected in the spleen, followed by the liver and the tumor. Our findings indicate that SW620 cells express a higher level of PD-L1, and the NIR-PD-L1-mAb binding to PD-L1 on the surface of CRC cells was specific. The technique was safe and could provide valuable information on PD-L1 expression of the tumor for development of a therapeutic strategy of personized targeted immunotherapies as well as treatment response of patients with CRC.  相似文献   

5.
6.
Colorectal tumorigenesis is a heterogeneous disease driven by multiple genetic and epigenetic alterations. F-box and WD repeat domain containing 11 (FBXW11) is a member of the F-box protein family that regulates the ubiquitination of key factors associated with tumor growth and aggressiveness. Our study aimed to explore the role of FBXW11 in the development and metastasis of colorectal cancer (CRC). FBXW11 was overexpressed in colorectal tumor tissues and its overexpression was associated with a poor prognosis of CRC patients. The upregulation of FBXW11 not only promoted cell proliferation, invasion, and migration, but also contributed to maintaining stem-cell features in colorectal tumor cells. Further analysis revealed that FBXW11 targeted hypermethylated in cancer 1 (HIC1) and reduced its stability in CRC cells through ubiquitination. Moreover, the expression of sirtuin 1 (SIRT1), a deacetylase in tumor cells was upregulated by FBXW11 via regulating HIC1 expression. The mouse xenograft models of CRC confirmed that FBXW11 knockdown impeded colorectal tumor growth and liver metastasis in vivo. In summary, our study identified FBXW11 as an oncogenic factor that contributed to stem-cell-like properties and liver metastasis in CRC via regulating HIC1-mediated SIRT1 expression. These results provide a rationale for the development of FBXW11-targeting drugs for CRC patients.Subject terms: Cancer, Endocrine system and metabolic diseases  相似文献   

7.
MicroRNAs (miRNAs/miRs) have aroused increasing attention in colorectal cancer (CRC) therapy. This study is designed for a detailed analysis of the roles of miR-16-5p and forkhead box K1 (FOXK1) in cell angiogenesis and proliferation during CRC in addition to their underlying mechanisms. CRC tissues and colon cancer cell lines (SW620 and HCT8) were investigated. qRT-PCR and Western blot were utilized to evaluate miR-16-5p and FOXK1 expression. Following gain- and loss-of-function assays on miR-16-5p or FOXK1, the effects of miR-16-5p and FOXK1 were assessed on cell angiogenesis and proliferation in CRC cells. A dual-luciferase reporter assay was employed to evaluate the binding relationship of miR-16-5p and FOXK1. Western blot was used to determine the effects of miR-16-5p and FOXK1 on key molecules of the PI3K/Akt/mTOR pathway. Highly expressed FOXK1 and lowly expressed miR-16-5p were observed in CRC cells and tissues. miR-16-5p overexpression or FOXK1 knockdown reduced CRC cell proliferation and angiogenesis of human umbilical vein endothelial cells co-cultured with the supernatant of CRC cells, whereas miR-16-5p silencing or FOXK1 upregulation caused opposite trends. Additionally, miR-16-5p negatively modulated FOXK1 expression. The blockade of the PI3K/Akt/mTOR pathway was triggered by miR-16-5p overexpression or FOXK1 silencing. In conclusion, miR-16-5p hampers cell angiogenesis and proliferation during CRC by targeting FOXK1 to block the PI3K/Akt/mTOR pathway.Key words: microRNA-16-5p, forkhead box K1, PI3K/Akt/mTOR pathway, colorectal cancer, proliferation, angiogenesis  相似文献   

8.
ABSTRACT: BACKGROUND: Special AT-rich sequence-binding protein 1 (SATB1) is a global gene regulator that has been reported to confer malignant behavior and associate with poor prognosis in several cancer forms. SATB1 expression has been demonstrated to correlate with unfavourable tumour characteristics in rectal cancer, but its association with clinical outcome in colorectal cancer (CRC) remains unclear. In this study, we examined the prognostic impact of SATB1 expression in CRC, and its association with important molecular characteristics; i.e. beta-catenin overexpression, microsatellite instability (MSI) screening status, and SATB2 expression. METHODS: Immunohistochemical expression of SATB1 and beta-catenin was assessed in tissue microarrays with tumours from 529 incident CRC cases in the prospective population-based Malmo Diet and Cancer Study, previously analysed for SATB2 expression and MSI screening status. Spearman[ACUTE ACCENT]s Rho and Chi-Square tests were used to explore correlations between SATB1 expression, clinicopathological and investigative parameters. Kaplan Meier analysis and Cox proportional hazards modelling were used to explore the impact of SATB1 expression on cancer specific survival (CSS) and overall survival (OS). RESULTS: SATB1 was expressed in 222 (42%) CRC cases and negative, or sparsely expressed, in adjacent colorectal mucosa (n = 16). SATB1 expression was significantly associated with microsatellite stable tumours (p < 0.001), beta-catenin overexpression (p < 0.001) and SATB2 expression (p < 0.001). While not prognostic in the full cohort, SATB1 expression was significantly associated with poor prognosis in SATB2 negative tumours (HR = 2.63; 95% CI 1.46-4.71; pinteraction = 0.011 for CSS and HR = 2.31; 95% CI 1.32-4.04; pinteraction = 0.015 for OS), remaining significant in multivariable analysis. CONCLUSIONS: The results of this study demonstrate that SATB1 expression in CRC is significantly associated with beta-catenin overexpression, microsatellite stability and SATB2 expression. Furthermore, SATB1 expression is a factor of poor prognosis in SATB2 negative tumours. Altogether, these data indicate an important role for SATB1 in colorectal carcinogenesis and suggest prognostically antagonistic effects of SATB1 and SATB2. The mechanistic basis for these observations warrants further study.Virtual slidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1922643082772076.  相似文献   

9.
Yang  Yang  Zhang  Tao  Wu  Lixiang 《Biochemical genetics》2021,59(4):1018-1032

Since the incidence and mortality of colorectal cancer (CRC) are increasing in recent years, the research on the pathogenesis of colorectal cancer has attracted more and more attention. Here, our results confirmed that the mRNA expression level and proteins accumulation of TUFT1 were significantly increased in CRC tissues from late-stage CRC patients (III?+?IV) (p?<?0.001), indicated by qPCR and IHC assay. The TUFT1 expression was positively correlated with tumor stage by analyzing 126 specimens from CRC patients. Next, we found that up-regulation of TUFT1 enhanced the migration and invasion of LoVo cells, whereas the down-regulation of TUFT1 observably weakened the migration and invasion of SW837 cells, indicating that TUFT1 promotes the metastasis of CRC cells. In addition, TUFT1 overexpression increased the number of mammary spheres and vincristine resistance of LoVo cells by sphere formation assay and measuring the IC50 value, suggesting the TUFT1 promotes stemness and the vincristine resistance of CRC cells. Finally, we found that TUFT1 overexpression increased p-AKT in LoVo cells, while down-regulation of TUFT1 decreased the p-AKT levels in SW837 cells. Therefore, we determined that the function of TUFT1 in CRC depends on PI3K/AKT pathway. Taken together, these data demonstrated that TUFI1 facilitates metastasis, stemness, and vincristine resistance of colorectal cancer cells via activation of PI3K/AKT pathway, which might act as a promising therapeutic target for CRC.

  相似文献   

10.
Biomarkers and novel therapeutic targets are urgently needed in colorectal cancer (CRC). The pseudo tyrosine kinase receptor 7 (PTK7) is involved in planar cell polarity and it is deregulated in various malignancies, including CRC. Yet, little is known about its protein expression in human CRC, or about a possible correlation of its expression with clinical endpoints. Using a clinically annotated Tissue MicroArray (TMA) produced from from 192 consecutive CRC patients treated by initial surgery, we examined PTK7 expression by immunohistochemistry in tumoral tissue and matched normal mucosae, and correlated its expression with clinico-pathological features and patient outcome. PTK7 depletion by specific shRNA in HCT116 and HCT15 CRC cell lines was found to affect cell proliferation, resistance to drugs and cell migration. Tumor growth and metastatic phenotype were investigated in vivo using a xenograft mouse model of CRC cells with modulated expression of PTK7 levels. PTK7 was significantly up-regulated in CRC tissue as compared to matched healthy mucosae, and significant overexpression was found in 34% of patients. PTK7 overexpression was significantly associated with a reduced metastasis-free survival in non-metastatic patients. In HCT116 and HCT15 cells, shRNA PTK7 reduced migration but did not affect cell proliferation and resistance to drugs. In a xenograft mouse of HCT15 cells, downregulation of PTK7 led to reduced tumor growth, whereas its overexpression in PTK7-negative cancer cells led to increased metastatic events. PTK7 expression thus represents a potential prognostic biomarker and a novel therapeutic target in CRC.  相似文献   

11.
12.
Osteopontin (OPN) has been shown to promote colorectal cancer (CRC) progression; however, the mechanism of OPN‐induced CRC progression is largely unknown. In this study, we found that OPN overexpression led to enhanced anchorage‐independent growth, cell migration and invasion in KRAS gene mutant cells but to a lesser extent in KRAS wild‐type cells. OPN overexpression also induced PI3K signalling, expression of Snail and Matrix metallopeptidase 9 (MMP9), and suppressed the expression of E‐cadherin in KRAS mutant cells. In human CRC specimens, a high‐level expression of OPN significantly predicted poorer survival in CRC patients and OPN expression was positively correlated with MMP9 expression, and negatively correlated with E‐cadherin expression. Furthermore, we have found that 15 genes were co‐upregulated in OPN highly expression CRC and a list of candidate drugs that may have potential to reverse the secreted phosphoprotein 1 (SPP1) gene signature by connectivity mapping. In summary, OPN is a potential prognostic indicator and therapeutic target for colon cancer.  相似文献   

13.
14.
Novel candidates of biomarker and therapeutic target in colorectal cancer (CRC) were investigated using a proteomic approach. The proteome of normal colorectal epithelial tissues was compared with that of the tumor ones in 59 CRC patients using two-dimensional difference gel electrophoresis. Of 3458 protein spots, 110 exhibited statistically significant (p<0.01) differences in intensity (more than 2.5-folds) between the normal and tumor tissue groups. Of 67 unique gene products that were identified for 105 of the 110 protein spots, we focused on the higher expression of the adenoma polyposis coli-binding protein EB1 (EB1). EB1 was originally discovered as a binding protein of APC, which is a tumor suppressor gene product, and the expression of EB1 has been associated with poor prognosis in several malignancies but not in CRC. Immunohistochemical analysis of the 132 CRC cases revealed that EB1 was overexpressed in tumor cells in correlation with poor prognosis. Suppression of EB1 by RNAi inhibited CRC cell proliferation and invasion. In this study, the overexpression of EB1 in CRC tissues correlating with prognosis, and its functional contribution to the malignant phenotypes of CRC cells are described. The present findings indicate that EB1 is a potential biomarker and therapeutic target in CRC.  相似文献   

15.
Emerging evidence indicate that microRNAs (miRNAs) may play important roles in cancer. Aberrant expression of miRNAs has been frequently identified in different human malignancies, including colorectal cancer (CRC). However, the mechanism by which deregulated miRNAs impact the development of CRC remains largely elusive. In this study, we show that miR-124 is significantly down-regulated in CRC compared to adjacent non-tumor colorectal tissues. MiR-124 suppresses the expression of STAT3 by directly binding to its 3′-untranslated region (3′-UTR). Overexpression of miR-124 led to increased apoptosis of CRC cells and reduced tumor growth in vitro and in vivo. Knocking down STAT3 expression by specific siRNA suppressed the growth of CRC cells in vitro and in vivo, resembling that of miR-124 overexpression. Moreover, overexpression of STAT3 in miR-124-transfected CRC cells effectively rescued the inhibition of cell proliferation caused by miR-124. These data suggest that miR-124 serves as a tumor suppressor by targeting STAT3, and call for the use of miR-124 as a potential therapeutic tool for CRC, where STAT3 is often hyper-activated.  相似文献   

16.
《Genomics》2023,115(4):110646
ObjectiveThis study aims to dissect impacts of exosomes-delivered PD-L1 and CTLA-4 siRNAs on colorectal cancer (CRC) progression and immune responses.MethodsExosomes containing PD-L1 siRNA and CTLA-4 siRNA were prepared and utilized to treat CRC cells to evaluate their effects. A tumor-bearing mouse model was established for verification.ResultsExosomes containing PD-L1 siRNA and CTLA-4 siRNA repressed malignant features of CRC cells and restrained tumor growth and activated tumor immune responses in vivo. Co-culture of CRC cells treated with exosomes containing PD-L1 siRNA and CTLA-4 siRNA with human CD8+ T cells increased the percentage of CD8+ T cells, decreased the apoptotic rate of CD8+ T cells, elevated IL-2, IFN-γ, and TNF-α expression in cell supernatants, reduced adherent density of CRC cells, augmented the positive rate of CRC cells, and subdued tumor immune escape.ConclusionExosomes containing PD-L1 siRNA and CTLA-4 siRNA suppressed CRC progression and enhanced tumor immune responses.  相似文献   

17.
A better understanding of the mechanisms underlying PD-L1 aberrant expression in head and neck squamous cell carcinoma (HNSCC) will help reveal predictive biomarkers and overcome resistance to treatment. In this study, the prognostic significance of PD-L1 in forty-five HNSCC archival samples was determined by qRT-PCR. The biological function associated with malignant behaviour was assessed by PD-L1 depletion, miR-382-3p re-expression and regulation of circ_0000052. The interactions of PD-L1-miRNA and miRNA-circRNA were determined by qRT-PCR, Western blot analysis, dual-luciferase reporter assays and RNA immunoprecipitation assays. PD-L1 was highly expressed in patient samples and cancer cell lines. Higher levels of PD-L1 were associated with patient recurrences and play a pivotal role in regulating cell proliferation, migration, invasion, clonogenicity and apoptosis. In addition to demonstrating that the IFN-γ/JAK2/STAT1 signalling pathway can induce PD-L1 overexpression in HNSCC, a novel mechanism by which upregulated circ_0000052 mediates PD-L1 overexpression was also demonstrated. To do this, circ_0000052 competitively binds to miR-382-3p and alleviates its repression of PD-L1. This leads to overexpression of PD-L1, causing the aggressiveness of the cells. Our data demonstrate that circ_0000052 is oncogenic, and the circ_0000052/miR-382-3p/PD-L1 axis is critical in HNSCC progression. The manipulation of circRNAs/miRNAs in combination with anti-PD-L1 therapy may improve personalized disease management.  相似文献   

18.
Although immune checkpoint inhibitors (ICIs) have gained much attention in managing cancer, only a minority of patients, especially those with tumors that have been classified as immunologically “cold” such as microsatellite stable (MSS) colorectal cancers (CRC), experience clinical benefit from ICIs. Surprisingly, interleukin-17 (IL-17) and its primary source Th17 are enriched in CRC and inversely associated with patient outcome. Our previous study revealed that IL-17A could upregulate programmed death-ligand 1 (PD-L1) expression and impede the efficacy of immunotherapy. IL-17, therefore, can be a possible target to sensitize tumor cells to ICIs. The detailed clinical results from our trial, which is the first to show the benefits of the combination of anti-PD-1 with anti-IL-17 therapy for MSS CRC, have also been presented. In this review, we highlight the role of IL-17 in ICIs resistance and summarize the current clinical evidence for the use of combination therapy. Directions for future strategies to warm up immunologically “cold” MSS CRCs have also been proposed.  相似文献   

19.
Gastric cancer (GC) and colorectal cancer (CRC) are frequent and aggressive malignancies worldwide. Despite the emergence of various therapeutic regimens, the prognosis of gastric and colorectal cancer is relatively poor. Immunotherapy targeting PD-1 is one of the most prevalent approaches, but it has a low response rate in most patients, particularly those with microsatellite stability (MSS). Recently, some targeted drugs have been found to remarkably enhance the anti-tumor immunity of cancer models, mainly through increasing the level of CD8+ T cells, M1-type macrophages, expression of PD-L1, and decreasing the level of regulatory T cells and M2 macrophages. The above finding implies that the combination of anti-PD-1 and targeted therapies may be a potential treatment for gastric and colorectal cancer patients. Although many encouraging preclinical results have been shown, the clinical outcomes were not approving enough. To further enhance the therapeutic efficacy and improve the prognosis in GC and CRC patients, deeper and larger-scale studies should be done to determine the complicated interactions between the two therapies and the concrete use of combination regimens.  相似文献   

20.
The oncogene microRNA-21 (miRNA; miR-21) is overexpressed in most solid organ tumours; however, a recent examination of stage II colorectal cancer (CRC) specimens suggests this may be a stromal phenomenon and not only a feature of cancer cells. In vitro and in vivo studies show that miR-21 has potent pro-metastatic effects in various malignant carcinoma cell lines. The tumour microenvironment has also been identified as a key actor during the metastatic cascade; however to date the significance of deregulated miR-21 expression within the cancer-associated stroma has not been examined. In the present study, a quantitative RT-PCR-based analysis of laser microdissected tissue confirmed that miR-21 expression is associated with a four-fold mean increase in CRC stroma compared with normal tissue. In situ hybridisation using locked nucleic acid probes localised miR-21 expression predominantly to fibroblasts within tumour-associated stroma. To study the molecular and biological impact of deregulated stromal miR-21 in CRC, stable ectopic expression was induced in immortalised fibroblasts. This resulted in upregulated α-smooth muscle actin expression implying miR-21 overexpression is driving the fibroblast-to-myofibroblast transdifferentiation. Conditioned medium from miR-21-overexpressing fibroblasts protected CRC cells from oxaliplatin-induced apoptosis and increased their proliferative capacity. 3D organotypic co-cultures containing fibroblasts and CRC cells revealed that ectopic stromal miR-21 expression was associated with increased epithelial invasiveness. Reversion-inducing cysteine-rich protein with kazal motifs, an inhibitor of matrix-remodelling enzyme MMP2, was significantly downregulated by ectopic miR-21 in established and primary colorectal fibroblasts with a reciprocal rise in MMP2 activity. Inhibition of MMP2 abrogated the invasion-promoting effects of ectopic miR-21. This data, which characterises a novel pro-metastatic mechanism mediated by miR-21 in the CRC stroma, highlights the importance of miRNA deregulation within the tumour microenvironment and identifies a potential application for stromal miRNAs as biomarkers in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号