首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol   总被引:10,自引:0,他引:10  
Laccase-catalyzed oxidative polymerization of 1-naphthol was carried out in a closed system containing acetone and sodium acetate buffer. The effects of initial 1-naphthol and dissolved oxygen concentrations on the initial reaction rate were investigated. A multiplicative mathematical model, using a function of 1-naphthol and dissolved oxygen concentrations, was developed for enzymatic polymerization and the corresponding biokinetic parameters have been evaluated for the first time. The activation energy and reaction rate constant of the laccase-catalyzed 1-naphthol polymerization were calculated as 57 kJ/mol and 311 l/s, respectively. The activation energy calculated was in the typical range of 30-60 kJ/mol and rate constant was of the order of magnitude of previously reported values for laccase-catalyzed reactions with different monomers.  相似文献   

2.
Glyceryl ferulate was synthesized by the condensation of ferulic acid with glycerol using Pectinase PL “Amano” from Aspergillus niger, which contained ferulic acid esterase, to improve the water-solubility of ferulic acid. The optimum reaction medium was glycerol/0.1 M acetate buffer, pH 4.0, (98:2 v/v). The enzyme immobilized onto Chitopearl BCW3003 exhibited the highest activity among the those immobilized onto various kinds of Chitopearl BCW resins. The optimum temperature for the immobilized enzyme was 50°C, and it could be reused at least five times without a significant loss in activity for the synthesis of glyceryl ferulate in batch reaction. Storage of the reaction mixture at 25°C improved the molar fraction of glyceryl ferulate relative to the dissolved ferulic residues.  相似文献   

3.
Two strains of Legionella pneumophila serogroup 1 monoclonal subgroup Pontiac were grown for the first time in continuous culture using a chemically defined medium. The influence of temperature on physiology and morphology was investigated by fixing the growth rate (equal to the dilution rate, D) at 0.08 h-1 and controlling the pH and dissolved oxygen concentration of the culture. Serine provided the principal source of carbon and energy but growth was limited by tyrosine. The bacterium behaved as a microaerophile in this medium, with maximal growth occurring at 0.31 (mg O2)I-1 (equivalent to a dissolved oxygen tension of 4% (v/v) air saturation at 30 degrees C). The cultures consisted of flagellated, short rods at 24 degrees C, but exhibited an increased level of pleomorphism and the loss of flagella as the temperature was increased to 37 degrees C. The presence of intracellular granules was noted, and their abundance was temperature-dependent. Polyhydroxybutyrate was present in L. pneumophila, and the proportion of the cell dry weight that it accounted for varied with temperature, being maximal at 24 degrees C. The ratio of saturated to unsaturated fatty acids in the cells decreased as the temperature was reduced towards 24 degrees C, so as to maintain membrane fluidity at low growth temperature.  相似文献   

4.
Response surface methodology (RSM) was successfully applied to enzymatic bio-transformation of 1-naphthol. The experiments were conducted in a closed system containing acetone and sodium acetate buffer, with laccase enzyme. Laccase enzyme used as catalyst was derived from Trametes versicolor (ATCC 200801). The enzymatic bio-transformation rate of 1-naphthol, based on measurements of initial dissolved oxygen (DO) consumption rate in the closed system, was optimized by the application of RSM. The independent variables, which had been found as the most effective variables on the initial DO consumption rate by screening experiments, were determined as medium temperature, pH and acetone content. A quadratic model was developed through RSM in terms of related independent variables to describe the DO consumption rate as the response. Based on contour plots and variance analysis, optimum operational conditions for maximizing initial DO consumption rate, while keeping acetone content at its minimum value, were 301 K of temperature, pH 6 and acetone content of 7% to obtain 9.17 x 10(-3) mM DO/min for initial oxidation rate.  相似文献   

5.
In the present study, the optimization of production and reaction conditions of polygalacturonase produced by a fungus Byssochlamys fulva MTCC 505 was achieved. The production of polygalacturonase with a considerable activity of 1.28 IU/ml was found when the culture was shaken at 30°C for 5 days in 100 ml of medium containing (w/v) 10 g/l pectin, 2 g/l NaNO?, 1 g/l KH?PO?, 0.5 g/l KCl, 0.5 g/l MgSO?. 7H?O, 0.001 g/l FeSO?. 7H?O, 0.001 g/l CaCl?. The best carbon and nitrogen source for this enzyme were pectin (1%) and Ca(NO?)? (0.1%), respectively. The enzyme gave maximum activity at incubation time of 72 h, temperature of 30°C and pH 4.5. During the optimization of reaction conditions, the enzyme showed maximum activity in sodium citrate buffer (50 mM) of pH 5.5 at 50°C reaction temperature for 15 minutes of incubation. The enzyme showed greater affinity for polygalacturonic acid as substrate (0.5%). Km and Vmax values were 0.15 mg/ml and 4.58 μmol/ml/min. The effect of various phenolics, thiols, protein inhibitors and metal ions on the enzyme activity was investigated. The enzyme was quite stable at 4°C and 30°C. At 40°C the half life of the enzyme was 6 h and at 60°C it was 2 h.  相似文献   

6.
This paper is to study the preparation and characterization of an immobilized L-glutamic decarboxylase (GDC) and develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO(2) electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The dynamic response of Na(2)HPO(4)-citric acid buffer system selected is much better than that of the others, 0.10 M HAc-0.10 M NaAc and 0.10 M sodium citrate-0.10 M citric acid. The initial rate of the enzyme reaction v(0) in this buffer system is 1.76 mol. l(-1) min(-1), moreover, the rate of the enzyme reaction appears linear in the first 4 min. The optimum adsorption equilibrium time is around 6 h. The amount of enzyme adsorbed on CM-CADB resin affects the response to substrate L-glutamic acid, the widest range of linearity is obtained with over 30 mg (GDC)/g(resin). The GDC activity immobilized on CM-CADB reaches a maximum when the immobilization temperature was kept around 40 degrees C. pH was kept at 4.4 when measuring the activity of the immobilized GDC. No variation of the activity of immobilized GDC is observed when the capacity is over 2.5 meq/g.(CM-CADB resin). The properties of the immobilized enzyme on CM-CADB were characterized. No significant improvement can be achieved when the substrate concentration exceeds 12.00 mmol/l, where the activity of immobilized GDC is equal to 1.58 mmol/l.min.g. The optimum pH is found to be 5.2, which changes 0.2 unit, comparing with that of the free GDC (5.0). The optimum temperature is found to be around 48 degrees C, which is lower than that of free GDC (55 degrees C). The critical temperature of the free GDC and the immobilized GDC is approximately 50 degrees C and 45 degrees C, respectively. The half-life of the activity is 127 days when the immobilized enzyme was stored in the cold (4 degrees C). An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO(2) electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamic acid. The determination conditions are that the buffer solution is 0.10 M Na(2)HPO(4)-0.05 M citric acid at pH 4.4 and t = 37 degrees C. The limit of detection is 1.0 x 10(-)(5) M. The linearity response is in the range of 5 x 10 (-2) - 5 x 10 (-5) M. The equation of linear regression of the calibration curve is y = 43.3x + 181.6 (y is the milli-volt of electrical potential response, x is the logarithm of the concentration of the substrate of L-glutamic acid). The correlation coefficient equals 0.99. The coefficient of variation equals 2.7%.  相似文献   

7.
In preparation for the development of a xylitol biosensor, the xylitol dehydrogenase of Candida tropicalis IFO 0618 was partially purified and characterized. The optimal pH and temperature of the xylitol dehydrogenase were pH 8.0 and 50 degrees C, respectively. Of the various alcohols tested, xylitol was the most rapidly oxidized, with sorbitol and ribitol being reduced at 65% and 58% of the xylitol rate. The enzyme was completely inactive on arabitol, xylose, glucose, glycerol, and ethanol. The enzyme's xylitol oxidation favored the use of NAD+ (7.9 U/mg) over NADP+ (0.2 U/mg) as electron acceptor, while the reverse reaction, D-xylulose reduction, favored NADPH (7.7 U/mg) over NADH (0.2 U/mg) as electron donor. The K(m) values for xylitol and NAD+ were 49.8 mM and 38.2 microM, respectively. For the generation of the xylitol biosensor, the above xylitol dehydrogenase and a diaphorase were immobilized on bromocyan-activated sephallose. The gel was then attached on a dissolved oxygen electrode. In the presence of vitamin K3, NAD+ and phosphate buffer, the biosensor recorded a linear response to xylitol concentration up to 3 mM. The reaction was stable after 15 min. When the biosensor was applied to a flow injection system, optimal operation pH and temperature were 8.0 and 30 degrees C, respectively. The strengths and limitations of the xylitol biosensor are its high affinity for NAD+, slow reaction time, narrow linear range of detection, and moderate affinity for xylitol.  相似文献   

8.
The activity of 4-ene-5 alpha-reductase was assayed in porcine testis homogenates and subcellular fractions, using testosterone as substrate. 'Marker' enzyme activities were utilized to indicate the purity of the subcellular fractions. 4-Ene-5 alpha-reductase activity was associated with the microsomal fraction; there was no activity in the purified nuclear fraction. Enzyme activity was higher in the testes of 6 week old pigs than those of 3 and 17 week old animals, and a range of activity was found. The enzyme was unstable when stored at -20 degrees C but the addition of albumin (0.1%, w/v) or glycerol (20%, v/v) to the buffer and storage at -70 degrees C or in liquid nitrogen ensured that maximal activity was retained for at least 35 days. In addition to 5 alpha-DHT, other 5 alpha-reduced metabolites and 4-androstenedione were formed in this reaction; NADPH was the preferred cofactor, but 40% of the 4-ene-5 alpha-reductase activity was retained when NADH was used. Solubilization of the microsomal enzyme was achieved using sodium citrate (0.1 M); 4-ene-5 alpha-reductase activity was enhanced to greater than 120% and 60% of this activity was in the soluble fraction. The optimum pH and temperature for both soluble and membrane-bound 4-ene-5 alpha-reductase were 6.9 and 32 degrees C, respectively. The mean apparent Km and Vmax were 0.6 mumol/l and 158 pmol/min/mg microsomal protein for the microsomal enzyme and 1.42 mumol/l and 212.0 pmol/min/mg soluble protein for the solubilized 4-ene-5 alpha-reductase. The estimated sedimentation coefficient was 11.6.  相似文献   

9.
UV scanning of alpha-chymotrypsin dissolved in neat glycerol and water showed no significant differences in its spectra at pH 7.8. Fluorescence scanning revealed a strong dependence on pH values (between 5.9 to 10.5) of the maximum wavelength emission in water and no pH-dependence in 99% glycerol supplemented with 1% of appropriate buffers. The profile of alpha-chymotrypsin activity dissolved in water-glycerol mixtures with phenyl acetate as substrate displayed two maximum: highest peak was found at 100% water, and the second one was observed in 99% glycerol concentration with about 40% of the relative activity. Optimum pH of the soluble alpha-chymotrypsin in glycerol showed a displacement of 1 pH/U towards the alkaline side compared to water at pH 8.0. Kinetic and thermodynamic analysis using kinetic measurements of the thermal stability of alpha-chymotrypsin showed a higher inactivation rate in neat glycerol as compared to water in 30 to 45 degrees C range, however, when temperature increases enzyme stability in glycerol is better than water. Thermostability of trypsin and alpha-chymotrypsin dissolved in glycerol at 100 degrees C showed a half reaction time of approximately 7 and 20 h, respectively, and less than 1 minute in aqueous buffer for both enzymes.  相似文献   

10.
To develop environment-friendly biofertilizer solubilizing insoluble phosphates, salt- and pH-tolerant, insoluble inorganic phosphate-solubilizing bacterium was isolated from soybean rhizosphere. On the basis of its physiological characteristics and Vitek analysis, this bacterium was identified as Pantoea agglomerans. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. agglomerans R-42 were 3% (w/v) of glucose, 0.1% (w/v) of NH4NO3, 0.02% (w/v) of MgSO4 x 7H2O, and 0.06% (w/v) of CaCl2 x 2H2O along with initial pH 7.5 at 30 degree C. The soluble phosphate production under optimal condition was around 900 mg/l, which was approximately 4.6-fold higher than the yield in the MPVK medium. The solubilization of insoluble phosphate was associated with a drop in the pH of the culture medium. P. agglomerans R-42 showed resistance against different environmental stresses like 5-45 degrees C temperature, 1-5% salt concentration and 3-11 pH range. Insoluble phosphate solubilization was highest from CaHPO4 (1367 mg/l), hydroxyapatite (1357 mg/l) and Ca3(PO4)2 (1312 mg/l). However, the strain produced soluble phosphate to the culture broth with the concentrations of 28 mg/l against FePO4, and 19 mg/l against AlPO4, respectively.  相似文献   

11.
Alkyl glycosides are surfactants with good biodegradability and low toxicity, attractive to produce by an enzymatic method to get a well-defined product. In this paper, we report a novel thermostable variant of a family 3 beta-glucosidase to be an efficient catalyst in alkyl-glucoside forming reactions using transglycosylation with hexanol or octanol as the acceptor molecule. The enzyme has an apparent optimum for hydrolysis at 90 degrees C, which coincides with its unfolding temperature. The total activity is lower at lower temperature (60 degrees C), but the ratio of alcoholysis/hydrolysis is slightly more favourable. This ratio is however more heavily influenced by the water content and the pH. Optimal reaction conditions for hexyl glucoside synthesis from p-nitrophenyl-beta-glucopyranoside were a water/hexanol two-phase system containing 16% (v/v) water, pH 5.8, and a temperature of 60 degrees C. Under these conditions, the total initial reaction rate was 153 micromol min(-1)mg(-1) and the alcoholysis/hydrolysis ratio was 5.1. Comparing with alcoholysis/hydrolysis ratios of other beta-glycosidases, TnBgl3B can be considered to be a very promising catalyst for alkyl glucoside production.  相似文献   

12.
Cellobiase has been isolated from the crude cellulase mixture of enzymes of Trichoderma viride using column chromatographic and ion-exchange methods. The steady-state kinetics of the hydrolysis of cellobiose have been investigated as a function of cellobiose and glucose concentrations, pH of the solution, temperature, and dielectric constant, using isopropanol-buffer mixtures. The results show that (i) there is a marked activation of the reaction by initial glucose concentrations of 4 X 10(-3) M to 9 X 10(-2) M and strong inhibition of the reaction at higher initial concentrations, (ii) the log rate -pH curve has a maximum at pH 5.2 and enzyme pK values of 3.5 and 6.8, (iii) the energy of activation at pH 5.1 is 10.2 kcal mol-1 over the temperature range 5-56 degrees C, and (iv) the rate decreases from 0 to 20% (v/v) isopropanol. The hydrolysis by cellobiase (EC 3.2.1.21) of p-nitrophenyl-beta-D-glucoside was examined by pre-steady-state methods in which [enzyme]0 greater than [substrate]0, and by steady-state methods as a function of pH and temperature. The results show (i) a value for k2 of 21 S-1 at pH 7.0 (where k2 is the rate constant for the second step in the assumed two-intermediate mechanism (formula: see text), (ii) a log rate -pH curve, significantly different from that for hydrolysis of cellobiose, in which the rate increases with decreasing pH below pH 4.5, is constant in the region pH 4.5-6, and decreases above pH 6 (exhibiting an enzyme pK value of 7.3), and (iii) an activation energy of 12.5 kcal mol-1 at pH 5.7 over the temperature range 10-60 degrees C.  相似文献   

13.
一株氨氧化链霉菌的分类鉴定及其氨氧化特性的研究   总被引:2,自引:0,他引:2  
从硝化反应器中分离获得一株链霉菌。根据其形态特征、培养特征、生理生化特性,(G+C)mol%含量以及16S rDNA序列和DNA杂交结果,将其归入链霉菌属中的比基尼链霉菌(Streptomycesbikiniensis)。该菌株既能在YD培养基上异养生长,也能在无机培养基上自养生长,异养生长速率(Vmax为0.39mg/L\5d)明显高于自养生长速率(Vmax为0.22mg/L.d)。异养生长时,氨氮主要用于合成细胞物质;自养生长时,部分氨氮用于合成细胞物质,部分氨氮转化成亚硝酸盐。在无机培养基上自养生长时,最适氨浓度为118mgN/L。最适生长pH值为9.36,最适氨氧化pH值为9.29。最适生长温度为31℃,最适氨氧化温度为40.6℃。提高溶解氧浓度有利于该菌株生长和氨氧化,菌体生长对溶解氧浓度的敏感性高于氨氧化。  相似文献   

14.
Polyphenol oxidase (PPO, EC 1.14.18.1) was extracted from celery roots (Apium graveolens L.) with 0.1 M phosphate buffer, pH 7.0. The PPO was partially purified by (NH4)2SO4 and dialysis. Substrate specificity experiments were carried out with catechol, pyrogallol, L-DOPA, p-cresol, resorcinol, and tyrosine. The Km for pyrogallol, catechol, and L-DOPA were 4.5, 8.3, and 6.2mM, respectively, at 25 degrees C. Data for Vmax/Km values, which represent catalytic efficiency, show that pyrogallol has the highest value. The optimum pH and temperature were determined with catechol, pyrogallol, and L-DOPA. Optimum pH was 7.0 for catechol and L-DOPA, and 7.5 for pyrogallol. Optimum temperatures for maximum PPO activity were 25 degrees C for pyrogallol, 40 degrees C for catechol, and 45 degrees C for L-DOPA. Heat inactivation studies showed a decrease in enzymatic activity at temperatures above 60 degrees C. The order of inhibitor effectiveness was: L-cysteine > ascorbic acid > glycine > resorcinol > NaCl.  相似文献   

15.
Application of a biosensor for monitoring of ethanol   总被引:4,自引:0,他引:4  
An alcohol biosensor for the measurement of ethanol has been developed. It comprises an alcohol oxidase/chitosan immobilized eggshell membrane and a commercial oxygen sensor. Ethanol determination is based on the depletion of dissolved oxygen content upon exposure to ethanol solution. The decrease in oxygen level was monitored and related to the ethanol concentration. The biosensor response depends linearly on ethanol concentration between 60 microM and 0.80 mM with a detection limit of 30 microM (S/N=3) and 1 min response time. In the optimization studies of the enzyme biosensor the most suitable enzyme and chitosan amounts were found to be 1.0 mg and 0.30% (w/v), respectively. The phosphate buffer (pH 7.4, 25 mM) and room temperature (20-25 degrees C) were chosen as the optimum working conditions. In the characterization studies of the ethanol biosensor some parameters such as interference effects, operational and storage stability were studied in detail. The biosensor was also tested with various wine samples. The results of this newly developed biosensor were comparable to the results obtained by a gas chromatographic method.  相似文献   

16.
AIMS: This work aimed to optimize the culture conditions for production of a novel and potent anti-tubercular alkaloid, hirsutellone A, by the saprophytic soil fungus Trichoderma gelatinosum BCC 7579. METHODS AND RESULTS: The fungus was initially cultured in shake flasks at 25 degrees C in the potato dextrose broth (PDB) supplemented with various carbon and nitrogen sources and mineral salts to select suitable medium for mycelial growth and hirsutellone A production. Cultivation conditions were further optimized by adjusting initial pH and changing temperature levels to maximize the production of hirsutellone A. The optimal condition that increased the production of hirsutellone A from 19.04 mg l(-1), obtained from basal condition, to 610.55 mg l(-1) and reduced the cultivation time from 40 to 6 days was to cultivate in a shaker at 200 rev min(-1) at 25 degrees C in PDB plus 20 g l(-1) soluble starch, 10 g l(-1) peptone and 2.5% (v/v) salt solution with initial pH of 7. Production of hirsutellone A in larger-scale using a 5-l batch fermenter was also completed yielding 958 mg l(-1) of hirsutellone A within 6 days. CONCLUSIONS: The suitable culture conditions for hirsutellone A production by T. gelatinosum BCC 7579 was the cultivation in 5-l fermenter at 25 degrees C in PDB plus 20 g l(-1) soluble starch, 10 g l(-1) peptone and 2.5% (v/v) salt solution with an initial pH of 7. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of hirsutellone A in a fermenter to obtain a high yield and reduce an incubation period will become very useful in anti-tubercular drug development process in the future.  相似文献   

17.
Optimal operational factors for nitrite accumulation in batch reactors   总被引:12,自引:0,他引:12  
Bae W  Baek S  Chung J  Lee Y 《Biodegradation》2001,12(5):359-366
The environmental factors that affected the accumulation of nitrite in nitrifying reactors were investigated using a mixed culture. A batch reactor with 50 mg-N/l of ammonia was used. The pH, temperature and dissolved oxygen concentration were varied. The concentration of unionized free ammonia also changed with the oxidation of ammonia and the variation of pH and temperature. The accumulation of nitrite was affected sensitively by pH and temperature. A higher nitrite concentration was observed at pH 8-9 or temperature around 30 °C. The dissolved oxygen also affected, giving the highest nitrite accumulation at around 1.5 mg/l. These were the favoredconditions for nitrite production. The free ammonia concentration influenced thenitrite accumulation also, by inhibiting nitrite oxidation. The inhibition becameapparent at a concentration of approximately 4 mg/l or above, but insignificant atbelow 1 mg/l. Thus, simultaneously high free ammonia concentration and maximumspecific ammonia-oxidation rate (above 15 × 10-3 mg-N/mg-VSSh)were needed for a significant nitrite accumulation. When the two conditions were met, thenthe highest accumulation was observed when the ratio of the maximum specific oxidationrate of ammonia to the maximum specific oxidation rate of nitrite (ka/kn) was highest.Under the optimal operating conditions of pH 8, 30 °C and 1.5 mg/l of dissolvedoxygen, as much as 77% of the removed ammonia accumulated in nitrite.  相似文献   

18.
Partially deacetylated chitin (PDAC) obtained by boiling chitin in 28.6% (w/w) sodium hydroxide was not dissolved when it was suspended in 2% acetic acid (pH 2.6) at 60°C for 12 h or autoclaved in acetate buffer (pH 5.0) for 20 min. The enzyme binding ability of the PDAC with glutaraldehyde was similar to that of chitosan. Immobilized pullulanase had low enzyme activity for high-molecular-weight material such as pullulan, but its activity for maltosyl β-cyclodextrin was almost the same as that of the free enzyme. The immobilized enzyme produced branched cyclodextrin through a reverse reaction in acetate buffer of pH 3.75 at 53°C.  相似文献   

19.
Microbial beta-fructofuranosidases with transfructosylating activity can catalyze the transfructosylation of sucrose and synthesize fructooligosaccharides. Aspergillus japonicus NTU-1249 isolated from natural habitat was found to produce a significant amount of beta-fructofuranosidase with high transfructosylating activity and to have the potential for industrial production of fructooligosaccharides. In order to improve it's enzyme productivity, the medium composition and the cultivation conditions for A. japonicus NTU-1249 were studied. A. japonicus NTU-1249 can produce 83.5 units of transfructosylating activity per ml broth when cultivated in a shaking flask at 28 degrees C for 72 hours with a modified medium containing 80 g/l sucrose, 15 g/l soybean flour, 5 g/l yeast extract and 5 g/l NaCl at an initial pH of 6.0. The enzyme productivity was also optimized by submerged cultivation in a 5-litre jar fermentor with aeration at 1.5 vvm and agitation at 500 rpm. Under these operating conditions, the productivity of transfructosylating activity increased to 185.6 U/ml. Furthermore, the transfructosylating activity was improved to 256.1 U/ml in 1,000-litre pilot-scale fermentor. Enzymatic synthesis of fructooligosaccharides by beta-fructofuranosidase from A. japonicus NTU-1249 was performed in batch type by adding 5.6 units of transfructosylating activity per gram of sucrose to a 50% (w/v) sucrose solution at pH 5.0 and 50 degrees C. The yield of fructooligosaccharides was about 60% after reaction for 24 hours, and the syrup produced contained 29.8% (w/v) fructooligosaccharides, 15.2% (w/v) glucose and 5.0% (w/v) sucrose.  相似文献   

20.
Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase was studied. The K(m)-value for lactose, obtained by a traditional enzymatic assay, was 0.066 mM at pH 6.4 and 38 degrees C. The effect of oxygen on the enzymatic rate of reaction as well as the operational stability of the enzyme was studied by performing reactions at constant pH and temperature in a stirred tank reactor. Catalase was included in all reactions to avoid inhibition and deactivation of the oxidase by hydrogen peroxide. At pH 6.4 and 38 degrees C, K(m) for oxygen was 0.97 mM, while the catalytical rate constant, k(cat), was 94 s(-1). Furthermore, we found that the operational stability of the oxidase was dependent on the type of base used for neutralization of the acid produced. Thus, when 2 M NaOH was used for neutralization of a reaction medium containing 50 mM phosphate buffer, significant deactivation of the oxidase was observed. Also, we found that the oxidase was protected against deactivation by base at high lactose concentrations. A simple model is proposed to explain the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号