首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for quantitative measurement of brain acetylcholinesterase (AChE) activity in living human brain using positron emission tomography (PET) is described. We tested several radiolabeled lipophilic acetylcholine analogs, e.g., N-methylpiperidyl esters, which readily entered the brain via the blood-brain barrier, were hydrolyzed selectively by AChE, and were then trapped in the brain. Among them, and tested and N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) was chosen as the tracer for PET. Quantitative measurement of cortical AChE was accomplished by fitting the time course of cerebral radioactivity concentration measured by PET and the metabolite-corrected arterial plasma input function using a nonlinear least-squares fitting method. Normal control studies of subjects with a wide range in age (24-89 years) showed no decrease in AChE activity in the cerebral cortex with age. Studies on patients with Alzheimer's disease demonstrated a widespread reduction of AChE activity in the cerebral cortex (more profound in early-onset than in late-onset Alzheimer's disease). Parkinson's disease and progressive supranuclear palsy, clinically similar disorders, could be differentiated with [11C]MP4A/PET studies. Simple methods without using an arterial input function are also proposed. The method provides a quantitative measure of the cholinergic aspect of brain function and proved to be useful in diagnosis of neurodegenerative disorders including Alzheimer's disease.  相似文献   

2.
We have synthesized the tertiary amines of pyridostigmine and neostigmine, 3-pyridinol dimethylcarbamate (norpyridostigmine) and 3-dimethylaminophenol dimethylcarbamate (norneostigmine) respectively, and we have tested their abilities to cross the blood-brain barrier and inhibit mouse brainAChE activity. The in vivo inhibition of AChE activity by norpyridostigmine reaches 72% at 10 minutes which is comparable to that seen with physostigmine (73% at 10 minutes). Inhibition by norneostigmine is less effective (50% at 10 minutes) and approaches that obtained with tetrahydroaminoacridine (57% at 10 minutes). These data show that both norpyridostigmine and norneostigmine cross the blood-brain barrier and that they are effective inhibitors of mouse brain AChE activity. These drugs could be useful in the treatment of memory, impairment associated with Alzheimer's disease, and other memory disorders.  相似文献   

3.
Delivery of monoclonal antibody therapeutics across the blood-brain barrier is an obstacle to the diagnosis or therapy of CNS disease with antibody drugs. The immune therapy of Alzheimer's disease attempts to disaggregate the amyloid plaque of Alzheimer's disease with an anti-Abeta monoclonal antibody. The present work is based on a three-step model of immune therapy of Alzheimer's disease: (1) influx of the anti-Abeta monoclonal antibody across the blood-brain barrier in the blood to brain direction, (2) binding and disaggregation of Abeta fibrils in brain, and (3) efflux of the anti-Abeta monoclonal antibody across the blood-brain barrier in the brain to blood direction. This is accomplished with the genetic engineering of a trifunctional fusion antibody that binds (1) the human insulin receptor, which mediates the influx from blood to brain across the blood-brain barrier, (2) the Abeta fibril to disaggregate amyloid plaque, and (3) the Fc receptor, which mediates the efflux from brain to blood across the blood-brain barrier. This fusion protein is a new antibody-based therapeutic for Alzheimer's disease that is specifically engineered to cross the human blood-brain barrier in both directions.  相似文献   

4.
In order to reveal the neuroprotective effects of statins that could be of interest for the prevention and treatment of Alzheimer's disease (AD), we investigated the expression of nicotinic acetylcholine receptors (nAChRs) detected by RT-PCR, the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by colorimetric determination, and the levels of the alpha-form of secreted beta-amyloid precursor protein (alphaAPPs) by Western blotting in neuroblastoma (SH-SY5Y) cells exposed to lovastatin, atorvastatin, rosuvastatin and simvastatin, respectively. The results indicated that all statins studied, both lipophilic and hydrophilic, induced high expression of alpha7 nAChR, decreased cholinesterase activities, and increased alphaAPPs, which suggests that statins might play important neuroprotective roles in AD treatment.  相似文献   

5.
A newly developed enzyme-linked immunosorbent assay for acetylcholinesterase (AChE) protein was combined with conventional measures of enzyme activity in a study of 15 brain regions from six control cases (non-neurological deaths), six cases of Alzheimer's disease, and six cases of Huntington's disease. In the control brains, the mean AChE activity varied 100-fold from region to region (cortex lowest, striatum highest). The variation in enzyme activity was exactly paralleled by a variation in protein immunoreactivity. Overall, the homospecific activity of AChE averaged 0.26 +/- 0.007 mU/pg, close to the value for electrophoretically homogeneous enzyme isolated from red blood cells. Similar homospecific activities were observed in samples from Huntington's and Alzheimer's brains. Evidently, AChE that is immunoreactive but enzymatically inactive does not accumulate in any of the three conditions examined. Huntington's brain samples showed normal total contents of AChE, but Alzheimer's brains showed significant decreases of both enzyme activity and immunoreactivity in all seven cortical regions and in two out of the eight subcortical structures examined, hippocampus and nucleus accumbens.  相似文献   

6.
24S-hydroxycholesterol is a side-chain oxidized oxysterol formed in the brain that is continuously crossing the blood-brain barrier to reach the circulation. There may be an opposite flux of 27-hydroxycholesterol, which is formed to a lower extent in the brain than in most other organs. Here we measured cholesterol, lathosterol, 24S- and 27-hydroxycholesterol, and plant sterols in four different brain areas of deceased Alzheimer's disease (AD) patients and controls. 24S-hydroxycholesterol was decreased and 27-hydroxycholesterol increased in all the brain samples from the AD patients. The difference was statistically significant in four of the eight comparisons. The ratio of 27-hydroxycholesterol to 24S-hydroxycholesterol was significantly increased in all brain areas of the AD patients and also in the brains of aged mice expressing the Swedish Alzheimer mutation APP751. Cholesterol 24S-hydroxylase and 27-hydroxylase protein was not significantly different between AD patients and controls. A high correlation was observed between the levels of 24S-hydroxycholesterol and lathosterol in the frontal cortex of the AD patients but not in the controls. Most probably the high levels of 27-hydroxycholesterol are due to increased influx of this steroid over the blood-brain barrier and the lower levels of 24S-hydroxycholesterol to decreased production. The high correlation between lathosterol and 24-hydroxycholesterol is consistent with a close coupling between synthesis and metabolism of cholesterol in the frontal cortex of the AD brain.  相似文献   

7.
To determine whether phospholipid abnormality in Alzheimer's disease is associated with modification of phosphatidylethanolamine-N-methyltransferase, the activity of the enzyme was analysed in the frontal and occipital cortex of the brain from patients with Alzheimer's disease and from aged-matched control. The optimum pH for phosphatidylethanolamine-N-methyltransferase in human brain was 9.0. The enzyme activity was stimulated by detergent TWEEN 20 but inhibited by Triton X-100. Neither magnesium dependence nor chemical methylation was found. A decrease in activity of phosphatidylethanolamine-N-methyltransferase was observed in the frontal cortex of brain affected with Alzheimer's disease. The addition of exogenous phosphatidylethanolamine resulted in no modification in the methylation rate as compared with that of endogenous PE. The addition of phosphatidyl-N-monomethylethanolamine and phosphatidyl-N,N-dimethylethanolamine resulted in significantly increased rates of methylation in brain tissues. However, the increased rate of phosphatidylethanolamine-N-methyltransferase activity stimulated by exogenous phospholipids was lower in the frontal cortex of brains with Alzheimer's disease when compared to the normals and there was no difference in the occipital cortex between Alzheimer's disease and the control. It is plausible that the decreased activity of phosphatidylethanolamine-N-methyltransferase and its low compensating ability could relate to the modification of phosphatidylcholine in brain tissues from Alzheimer's disease patients.  相似文献   

8.
The glycosylation of acetylcholinesterase (AChE) in CSF was analyzed by lectin binding. AChE from Alzheimer's disease (AD) patients was found to bind differently to two lectins, concanavalin A and wheat germ agglutinin, than AChE from controls. As multiple isoforms of AChE are present in both CSF and brain, we examined whether the abnormal glycosylation of AD AChE was due to changes in a specific molecular isoform. Globular amphiphilic dimeric (G2a) and monomeric (G1a) isoforms of AChE were found to be differentially glycosylated in AD CSF. Glycosylation of AChE was also altered in AD frontal cortex but not in cerebellum and was also associated with an increase in the proportion of light (G2 and G1) isoforms. This study demonstrates that the glycosylation of AChE is altered in the AD brain and that changes in AChE glycosylation in AD CSF may reflect changes in the distribution of brain isoforms. The study also suggests that glycosylation of AChE may be a useful diagnostic marker for AD.  相似文献   

9.
We studied the hexose transporter protein of the frontal and temporal neocortex, hippocampus, putamen, cerebellum, and cerebral microvessels (which constitute the blood-brain barrier) in Alzheimer disease and control subjects by reversible and covalent binding with [3H]cytochalasin B and by immunological reactivity. In Alzheimer disease subjects, we found a marked decrease in the hexose transporter in brain microvessels and in the cerebral neocortex and hippocampus, regions that are most affected in Alzheimer disease, but there were no abnormalities in the putamen or cerebellum. Hexose transporter reduction in cerebral microvessels of Alzheimer subjects is relatively specific because other enzyme markers of brain endothelium were not significantly altered. The low density of the hexose transporter at the blood-brain barrier and in the cerebral cortex in Alzheimer disease may be related to decreased in vivo measurements of cerebral oxidative metabolism.  相似文献   

10.
Evidence suggests that specific inhibition of butyrylcholinesterase may be an appropriate focus for the development of more effective drugs to treat dementias such as Alzheimer's disease. Butyrylcholinesterase is a co-regulator of cholinergic neurotransmission and its activity is increased in Alzheimer's disease, and is associated with all neuropathological lesions in this disease. Some selective butyrylcholinesterase inhibitors have already been reported to increase acetylcholine levels and to reduce the formation of abnormal amyloid found in Alzheimer's disease. Synthesized N-(10)-aryl and N-(10)-alkylaryl amides of phenothiazine are specific inhibitors of butyrylcholinesterase. In some cases, inhibition constants in the nanomolar range are achieved. Enzyme specificity and inhibitor potency of these molecules can be related to molecular volumes, steric and electronic factors. Computed logP values indicate high potential for these compounds to cross the blood-brain barrier. Use of such butyrylcholinesterase inhibitors could provide direct evidence for the importance of this enzyme in the normal nervous system and in Alzheimer's disease.  相似文献   

11.
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA1) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism.  相似文献   

12.
Wenk GL  Quack G  Moebius HJ  Danysz W 《Life sciences》2000,66(12):1079-1083
The loss of cholinergic neurons within the basal forebrain of patients with Alzheimer's disease (AD) may underlie aspects of the dementia. Excessive activation of N-methyl-D-aspartate (NMDA) receptors may underlie the degeneration of cholinergic cells. New drug therapies have been designed to either enhance cholinergic function by inhibition acetylcholinesterase (AChE), e.g. galanthamine, tetrahydroaminoacridine or donepezil, or by attenuation of NMDA receptor function, e.g. memantine. A combination of these two therapeutic approaches may be more beneficial at slowing the progression of the AD. The current study investigated whether memantine would attenuate the inhibition of AChE produced by these three drugs. The results indicate that these AChE inhibitors do not lose their therapeutic efficacy in combination with memantine. Our in vitro data suggest that the clinical combination of memantine with a reversible AChE inhibitor should be a valuable pharmacotherapeutic approach to dementia.  相似文献   

13.
The uptake of intravascular [123I]isopropyliodoamphetamine (IMP) and99mTc-pertechnetate into choroid plexus (CP) and brain (frontal cortex) was studied by an indicator fractionation method applied to immature, ketamine-anesthetized Sprague-Dawley rats (1.5, 2, and 3 wk). Assessment of the rate and extent of uptake of these indicators provides functional information (eg blood flow; transport) about various regions of the developing CNS. IMP uptake by lateral ventricle CP was 1.15 ml/g/min in 1.5-wk-old infant rats and gradually increased to 3.9 ml/g/min by adulthod (7–8 wk) (P<0.05); over the same postnatal period,99mTc uptake went from 2.82 to 3.18 ml/g/min. IMP uptake by cortex was 0.39 and 0.99 ml/g/min in infants and adults, respectively (P<0.05); however,99mTc uptake by cortex was only 0.07±0.01 ml/g/min at all ages, reflecting early development of blood-brain barrier (BBB) to pertechnetate. Overall, our findings indicated a progressive increase with age in the rate of uptake of IMP by CP and brain; and that99mTc penetration into CP was relatively constant and substantially greater than into cortex at all developmental stages. Thus the nature of uptake of IMP, relative to99mTc, was markedy different at the blood-cerebrospinal fluid barrier (i.e., CP) vs. the blood-brain barrier.  相似文献   

14.
AChE and BuChE are druggable targets for the discovery of anti-Alzheimer’s disease drugs, while dual-inhibition of these two targets seems to be more effective. In this study, we synthesised a series of novel isoflavone derivatives based on our hit compound G from in silico high-throughput screening and then tested their activities by in vitro AChE and BuChE bioassays. Most of the isoflavone derivatives displayed moderate inhibition against both AChE and BuChE. Among them, compound 16 was identified as a potent AChE/BuChE dual-targeted inhibitor (IC50: 4.60?μM for AChE; 5.92?μM for BuChE). Molecular modelling study indicated compound 16 may possess better pharmacokinetic properties, e.g. absorption, blood–brain barrier penetration and CYP2D6 binding. Taken together, our study has identified compound 16 as an excellent lead compound for the treatment of Alzheimer’s disease.  相似文献   

15.
The effect of different L-phenylalanine (Phe) concentrations (0.12-12.1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase activities was investigated in homogenates of adult rat whole brain and frontal cortex at 37 degrees C. AChE, (Na+,K+)-ATPase and Mg2+-ATPase activities were determined after preincubation with Phe. AChE activity in both tissues showed a decrease up to 18% (p<0.01) with Phe. Whole brain Na+,K+-ATPase was stimulated by 30-35% (p<0.01) with high Phe concentrations, while frontal cortex Na+,K+-ATPase was stimulated by 50-55% (p<0.001). Mg2+-ATPase activity was increased only in frontal cortex with high Phe concentrations. It is suggested that: a) The inhibitory effect of Phe on brain AChE is not influenced by developmental factors, while the stimulation of Phe on brain Na+,K+-ATPase is indeed affected; b) The stimulatory effect of Phe on rat whole brain Na+,K+-ATPase is decreased with age; c) Na+,K+-ATPase is selectively more stimulated by high Phe concentrations in frontal cortex than in whole brain homogenate; d) High (toxic) Phe concentrations can affect Mg2+-ATPase activity in frontal cortex, but not in whole brain, thus modulating the amount of intracellular Mg2+.  相似文献   

16.
Recent epidemiological studies suggest that inhibitors of 3-hydroxy-3-methyl-glutaryl CoA reductase, so-called statins, are effective in lowering the prevalence of Alzheimer's disease. Whether the effect of statins is due to a local inhibition of cholesterol synthesis in the brain or whether it is mediated by the reduced levels of cholesterol in the circulation is not known. In the present work, we tested the possibility that high doses of lipophilic and hydrophilic statins, simvastatin and pravastatin, respectively, or a diet high in cholesterol could affect cholesterol homeostasis in the brain of guinea pigs. The total brain cholesterol levels were not affected by high-dose simvastatin or pravastatin treatment. Significantly lower levels of the cholesterol precursor lathosterol and its ratio to cholesterol were found in the brains of simvastatin and pravastatin-treated animals. 24S-Hydroxycholesterol, the transportable form of cholesterol across the blood-brain barrier, was significantly lower in the brain of pravastatin-treated animals. Excessive cholesterol feeding resulted in higher serum cholesterol levels but did not affect total brain cholesterol level. However, de novo cholesterol synthesis in the brain seemed to be down-regulated, as indicated by lower absolute levels and cholesterol-related ratios of lathosterol compared with controls. The passage of deuterium-labeled cholesterol across the blood-brain barrier in one animal was found to be approximately 1%. Our results suggest that brain cholesterol synthesis in guinea pigs can be slightly, but significantly, influenced by high doses of lipophilic and hydrophilic statins as well as by high dietary cholesterol intake, while total brain cholesterol content and thus, cholesterol homeostasis is maintained.  相似文献   

17.
A frontal variant of Alzheimer's disease (AD) has recently been identified on neuropathological and neuropsychological grounds (Johnson, J.K., Head, E., Kim, R., Starr, A., Cotman, C.W., 1999. Clinical and pathological evidence for a frontal variant of Alzheimer Disease. Arch. Neurol. 56, 1233-1239). Frontal AD differs strikingly from typical AD by the occurrence of neurofibrillary tangle densities in the frontal cortex as high or higher than in the entorhinal cortex. Since cerebrocortical membranes are commonly abnormal in Alzheimer's disease (AD), we assayed frontal AD cases for enzymes regulating membrane phospholipid composition. We specifically measured activity of phospholipase A2s (PLA2s) in dorsolateral prefrontal and lateral temporal cortices of frontal AD cases (n=12), which have respectively high and low densities of neurofibrillary tangles. In neither cortical area was Ca(2+)-dependent PLA2 activity abnormal compared to controls (n=12). In contrast, a significant 42% decrease in Ca(2+)-independent PLA2 activity was found in the dorsolateral prefrontal, but not the lateral temporal, cortex of the frontal AD cases. Similarly, the dorsolateral prefrontal cortex, but not the lateral temporal cortex of the frontal AD cases suffered a 42% decrease in total free fatty acid content, though neither that decrease nor those in any one species of free fatty acid was significant. The observed biochemical changes probably occurred in neurons given (a) our finding that PLA2 activity of cultured human NT2 neurons is virtually all Ca(2+)-independent and (b) the finding of others that nearly all Ca(2+)-independent PLA2 in brain gray matter is neuronal. The decrease in Ca(2+)-independent PLA2 activity is not readily attributable to Group VI or VIII iPLA2s since neither NT2N neurons nor our brain homogenates were greatly inhibited by drugs potently suppressing those iPLA2s. Decreased Ca(2+)-independent PLA2 activity in frontal AD may reflect a compensatory response to pathologically accelerated phospholipid metabolism early in the disorder. That could cause an early elevation of prefrontal free fatty acids, which can stimulate polymerization of tau and thus promote the prefrontal neurofibrillary tangle formation characteristic of frontal AD.  相似文献   

18.
Abstract: A severe reduction of the in vivo cerebral glucose consumption rate is generally found in patients with Alzheimer's disease. In postmortem studies changes in the activities of key regulatory glycolytic enzymes, including 6-phosphofructokinase (PFK), have been reported in Alzheimer's disease brains, but the results obtained so far are inconsistent and controversial. We reevaluated the activity of PFK in brain tissue from clinically and neuropathologically confirmed cases of Alzheimer's disease using optimized tissue disintegration and assay methods and determined the PFK isozyme pattern. PFK activity in brains from patients with Alzheimer's disease was significantly increased in frontal and temporal cortex and unchanged in the other brain areas studied when compared with control brains. All three PFK isozymes were detected in each of the brain areas studied. In brains of Alzheimer's disease patients the level of the C-type PFK was slightly reduced at the expense of the M- and L-type subunits. The data presented do not support the results of other groups, which reported up to a 90% reduction of PFK activity in Alzheimer's disease. In contrast, the data presented clearly rule out the suggestion that changes of PFK activity might be one of the causes for the reduced glucose consumption in Alzheimer's disease brains.  相似文献   

19.
Quantitative autoradiography was used to examine the distribution of [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding to protein kinase C in the middle frontal and temporal cortices and the hippocampal region of nine control and nine elderly subjects with Alzheimer's disease (AD). AD patients had a clinical diagnosis of the disease that was confirmed neuropathologically by the presence of numerous plaques in the hippocampus and cerebral cortex. Choline acetyltransferase (ChAT) activity was significantly reduced in the middle frontal and temporal cortex and in the hippocampus of AD subjects, with the deficit being greater than 60% of control values. Quantitative autoradiographic analysis of [3H]PDBu binding to protein kinase C revealed a heterogeneous pattern in control brain, being particularly high in superficial layers of the cortex and CA1 of the hippocampus. There were no significant differences between control and AD sections in all areas examined within the middle frontal cortex; e.g., layers I-II control, 491 +/- 46 versus AD, 537 +/- 39 pmol/g of tissue; middle temporal cortex, e.g., layers I-II control, 565 +/- 68 versus AD, 465 +/- 72 pmol/g of tissue; and hippocampal formation, e.g., CA1 control, 511 +/- 28 versus AD, 498 +/- 25 pmol/g of tissue. In a parallel study, [3H]PDBu binding to homogenate preparations of control and AD brain confirmed that there was no significant difference in [3H]PDBu binding in either the particulate or the cytosolic fraction. We have demonstrated in a well-defined population of AD patients that [3H]PDBu binding to protein kinase C remains preserved in brain regions that are severely affected by the neuropathological and neurochemical correlates of AD.  相似文献   

20.
OBJECTIVE: There is evidence to suppose that cholesterol-lowering medicine might confer protection against dementia, probably via modulation of cholesterol synthesis in the brain. The aim of the present study was to investigate the potential influence of statins and cholesterol diet on selected parameters relevant to Alzheimer's disease pathophysiology. METHODS: For 15 days, rats were orally administered simvastatin (10 or 20mg/kg b.wt.), atorvastatin (10 or 20mg/kg b.wt.), or aqua (control group); and one group was fed high-cholesterol (2%) diet. At the end of experiments brain (and plasma) cholesterol, lathosterol, hydroxymethylglutaryl-coenzyme A reductase protein, acetylcholinesterase activity, amyloid beta (40 and 42) and cholesterol synthesis rate (using the incorporation of deuterium from deuterated water) were determined and statistically compared to those of aqua. RESULTS: Both statins were able to lower cholesterol in the plasma, but none elicited an effect on total brain cholesterol. Significant reductions of brain lathosterol and cholesterol synthesis rate were observed after simvastatin and atorvastatin treatment. Acetylcholinesterase activity, amyloid beta and hydroxymethylglutaryl-coenzyme A reductase levels remained unaffected by the two drugs. CONCLUSIONS: This study brings additional evidence of a role for statins in cholesterol synthesis in the brain. Our data question the relationship between amyloid beta, acetylcholinesterase activity and cholesterol synthesis in the rat brain as well as the assumption about no exchange between peripheral and brain cholesterol pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号